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Brief Summary of Myself

• Graduated from PhD in 2021
• 2021 – 2022: 

• Building Multimodal RAG Models at Google Brain

• 2022 – early 2025:
• 20% Part-time at Google Gemini for Image Generation and Evaluation.

• 2022 – Present: 
• Lead the TIGER-Lab at University of Waterloo
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TIGER-Lab

• Text-and-Image GEneration Research

Evaluation:
MMMU, MMLU-Pro

MEGA-Bench

RAG:
UniIR, LM2Vec, 

LongRAG

Reasoning:
MAmmoTH v1/v2, 

General-Reasoner v1/v2

Multimodal:
SuTI, T2V-Turbo, 

OmniEdit
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Talk Outline

• The talk outline for today:

Evaluation:
MMMU, MMLU-Pro

MEGA-Bench

Reasoning:
MAmmoTH v1/v2, 

General-Reasoner v1/v2
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Vision:
Building Internet for AI



Section 1: Evaluation

Evaluation:
MMMU, MMLU-Pro

MEGA-Bench
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VL Benchmark: MMMU
LLM Benchmark: MMLU-Pro



Key Aspects in Expert-Level Benchmarks
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MMMU: A Massive Multi-
discipline Multimodal 
Understanding and Reasoning 
Benchmark for Expert AGI
Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel 
Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, 
Renliang Sun, Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan 
Sun, Yu Su, Wenhu Chen
[CVPR 2024 Best Paper Finalist]
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Existing VL Benchmarks (as of Oct 2023)
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Measuring Expert AGI
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1) Rigorous Data Curation Process



Curation Pipeline
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2) Model Diagnosis Tool



Subject-Specific Accuracy
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○The gap between the best models and human experts is not large.

○The difference between open-source and proprietary models is not significant.



Subject-Specific Accuracy
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○The gap between the best models and human experts is significantly large.

○Models struggle with these subjects, which involve more complex reasoning questions



Difficulty-Specific Accuracy
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GPT-4V outperforms open-source models on easy and medium-level tasks, 
while all models struggle with hard examples.



Tables, Plots, and Domain-Specific Images
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GPT-4V is better at comprehending tables, plots and domain-specific images 
compared with open-source models.



Single-Image V.S. Multiple-Image
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○Models generally struggle with reasoning over multiple images
○VILA performs notably better in this area
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3) Comprehensive Evaluation



The Progress on MMMU
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Open-Source VS. Proprietary
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The gap between open-source and 
proprietary models exhibits a cyclical 
pattern of catch-up and divergence.



Open-Source VS. Proprietary
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Even the best proprietary model, 
Gemini 2.5 Pro Deep-Think, still has 
gaps compared to human experts.



MMLU-Pro: A More Robust and 
Challenging Multi-Task Language 
Understanding Benchmark
Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, 
Shiguang Guo, Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max 
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue, Wenhu Chen
[NeurIPS 2024 Spotlight]
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Existing LLM Benchmarks (as of March 2024)
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Knowledge Intensive Benchmark Math Reasoning Common Sense Reasoning

MMLU MATH DROP



Limitations of MMLU

1. Performance saturation (90%+) on MMLU limits differentiation 
between advanced models

2. Knowledge-focused questions with 4 options enable shortcut 
exploitation rather than understanding

3. Dataset noise creates artificial performance ceiling, reducing 
benchmark effectiveness
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Dataset Construction

The dataset consolidates questions from several sources:

• Original MMLU Questions: Part of the dataset comes from the 
original MMLU dataset. We remove the trivial/ambiguous queries.

• STEM & Non-STEM Website: Hand-picking high-quality STEM 
problems from the Internet to augment the evaluation set.

• Expanded answer choices from 4 to 10 options, reducing 
random guess probability from 25% to 10%
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Data Distribution
Discipline Number of 

Questions
From Original 
MMLU Newly Added

Math 1351 846 505

Physics 1299 411 888

Chemistry 1132 178 954

Law 1101 1101 0

Engineering 969 67 902

Other 924 924 0

Economics 844 444 400

Health 818 818 0

Psychology 798 493 305

Business 789 155 634

Biology 717 219 498

Philosophy 499 499 0

Computer 
Science

410 274 136

History 381 381 0

Total 12032 6810 5222
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Analysis 1: Difficulty Level

MMLU vs MMLU-Pro Model 
Performance Analysis

• MMLU is Saturated
• Better Differentiation
• Room for Improvement
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Analysis 2: Reasoning Level

CoT vs Direct Answering: Performance Analysis
• Overall Performance Trend
• Model-Specific Improvements

289/24/2025



Analysis 3: Robustness Degree

• Tested using 24 different 
reasonable prompts

• Benchmark Comparison
MMLU: 
• General variation: 4-5%
• Maximum variation: 10.98%
MMLU-Pro: 
• General variation: ~2%
• Maximum variation: 3.74%

Performance Variability under Different Prompts on MMLU and MMLU-Pro

299/24/2025



Error Analysis: GPT-4o

• Methodology
• Analysis of 120 randomly selected errors
• Evaluated by expert annotators

• Reasoning Errors: 39%
• Logical inconsistencies
• Pattern recognition vs true understanding

• Knowledge Gaps: 35%
• Lack of specialized domain knowledge
• Issues with technical applications

• Calculation Errors: 12%
• Correct formulas but wrong computations
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Impact of MMMU and MMLU-Pro
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Adoption Citations



Section 2: Reasoning
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Reasoning:
MAmmoTH v1/v2, 

General-Reasoner v1/v2

SFT Reasoning: MAmmoTH2
RL Reasoning: General-Reasoner



MAmmoTH2: Scaling Instructions 
from the Web
Xiang Yue, Tuney Zheng, Ge Zhang, Wenhu Chen

[NeurIPS 2024]
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Instruction Tuning as Alignment

• A popular view claims that the instruction tuning is only for 
aligning the model.

• Less is More: we can simply adopt a small dataset as few as 3K 
examples to align LLMs to downstream tasks.

• Common Beliefs: Instruction Tuning cannot improve models’ 
general capabilities.

349/24/2025



Exiting Datasets (as of Feb 2024)
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- Diversity is low: it’s mostly math only or compiled by several human-annotated ones.
- Scale is also low: the largest ones are around 1M, which are totally synthesized.



Can We Scale Up Instruction Tuning?

• We emphasize both quality and quantity.

• Previous work adopts:
• Human labels
• LLM Synthesis

• How to ensure quality and quantity?
• Mine existing instruction pairs from the web.
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Natural Instruction on the Web

• Available Resources: Forums, Educational Website, Quiz
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How to mine them?

• Highly dispersed across the web.

• Containing lots of unrelated information.

• Missing lots of useful information, with incomplete answers.
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Pipeline

• Efficient classifier-based Recall:
• Mine the useful URLs from Common Crawl.
• Group and identify most useful domains.

• Web information Extraction:
• Customized content extraction from raw web page.

• Information Completion:
• Refine the extracted information from the web with LLMs.
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1. Recall Step

40

1. Identifying the seed data we desire.
2. Curating enough seed data for classifier training.
3. Train an initial version of classifier.
4. Recall from the web.
5. Group URLs based on domain and then use GPT-3.5 to select the most useful domains.
6. Gather the web page from the useful domains and re-train classifier with larger data.
7. Recall again from the web.
8. Group URLs based on domain and then use GPT-3.5 to select the final URL domains.
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2. Extraction Step

41

1. Customized rule-based web parsing for the top domains.
2. Further utilize LLMs to select the span for instruction and response.
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3. Refine Step

42

1. Utilizing LLMs like Mixtral-22B and Qwen-72B for refining
2. Refine the content format and remove noise.
3. Complete the response if it’s missing, especially in educational websites.
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Pipeline Example
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Top Domains
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Domain Type Distribution
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WebInstruct vs. Existing Datasets
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- Diversity is high: WebInstruct covers broader disciplines
- Scale is high: WebInstruct is at least 3x larger than the existing SFT datasets.



Experimental Results (Reasoning)
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Experimental Results (Reasoning)
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Experimental Results (General)
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Takeaways

• Scaling up instruction tuning data is important.

• Extraction and Refining are necessary steps to improve perf.

• SFT loss is more effective than LM loss.

• Utilizing more capable models in the middle could lead to further 
improvement.
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General-Reasoner: Advancing 
LLM Reasoning Across All 
Domains
Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, Wenhu Chen

[Arxiv 2025]
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R1-style Training
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Limitations of Existing R1Trainig
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Math

Coding

Domains

verifier

String 
Match

Test
Cases

Rules

○The output length becomes much longer and the model hallucinates more!

○The general capabilities are not improved, MMLU-Pro normally drops by 4%+.



Towards General R1-Training
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Diverse Data General Verifier

Math + STEM + Arts Beyond String Matching



Data: WebInstruct-verified
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Verifier: General Verifier

• Given 𝑄, prompt open models to generate መ𝐴.
• Prompt Gemini-2.0-Pro to Generate CoT to compare 𝐴 and መ𝐴
• Synthesize large-scale inp-output: (𝑄, 𝐴, መ𝐴) ⇒ (𝐶𝑜𝑇, 𝑉)
• 𝑉 is the verdict (equal or not equal)

• Distill the inp-output (𝑄, 𝐴, መ𝐴) ⇒ (𝐶𝑜𝑇, 𝑉)
• We adopt Qwen-2.5-3B to distill the judgement data.
• It reaches 88% agreement rate with Gemini-2.0-Pro.
• It’s can be served with minimum GPU for RL training.
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General Verifier vs. Rule-based Verifier 

9/24/2025 57



Our Training Framework
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𝑞, 𝑎𝑟𝑒𝑓, 𝑜𝑖 𝑅𝑖

normalize



Impact of General Verifier
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Impact of General Verifier
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Experimental Results (General)
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Experimental Results (Math)
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Impact of All-Domain Dataset
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Diverse-domain Dataset can not only improves general reasoning but also math-only.



Takeaways

• Scaling up RL data is important

• Cross-domain generalization is essential for LLMs.

• Model-based Verifier can provide more dense rewards.
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