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Background and Motivation

• Text-to-Image Generation has achieved great success 

• Text-image alignment is high 

• Images are creative 

• Resolution is also high 

• However, it’s only controlled by text 

• Text is known to be ambiguous 

• Subject, Pose, Background, View, etc 

Text-to-Image Generation
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A Robo couple fine dining with Eiffel tower  
in the background.



Background and Motivation

• How can we control the model to generate a specific subject 

• Subject-Level Control 

• A specific dog or a specific person in different scenarios. 

• How can we control the model to generate a specific subject in a specfic scene 

• Background Control 

• A specific scene like a garden, a yard, etc.

Controllability in Text-to-Image Generation
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Subject-Level Control
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Subject and Background-Level Control
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DreamBooth: Fine Tuning Text-to-Image Diffusion Models

• Finetune on 3-5 images regarding the subjects for 1000 steps. 

• Maximize the diffusion model’s likelihood p(         | [V] dog). 

• Save the checkpoint, then use the checkpoint to generate images with [V].
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DreamBooth: Fine Tuning Text-to-Image Diffusion Models

• It requires fine-tuning the model 

• It consumes a lot of time. Normally 5-10 minutes to generate 1 image, which is 50x 
slower than normal text-to-image generation. 

• Saving one checkpoint per subject requires lots of disk space. 

• Therefore, this approach cannot scale up
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In-Context Learning for Subject-Driven image generation

• Can we avoid fine-tuning? 

• A single model to ace it all: 

• In-context demonstration without gradient descent. 

• Adapt to any subject quickly within 30 seconds. 

[X] dog

Diffusion[X] dog swimming

Demonstration
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What do we need to achieve In-Context Learning?

• We need to change the diffusion model architecture 

• The current architecture only supports image input 

• The model needs to attend to demonstration of multiple (image, text) pairs 

• We also need to construct new dataset to train the model 

• ((subject image1, subject image2, …, subject text) => (new text, new image)) 

• The diffusion model attends to these subject and generalize it to new scenario
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Architecture: Adding additional attention layer
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Dataset: how can we obtain such data?

• Desired format 

• (text_1, Image_1), (text_2, image_2), … (text_t, image_t), where these group of 
image-text pairs share the same subject. 

• Challenge 

• However, such data does not exist on the web! 

• The existing dataset consists of standalone (image, text) pairs.
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Web Image-Text Data Clustering

• Clustering 

• We group (image, text) pairs based on their URLs 

• We assume (image, text) pairs mined from the same URL are more likely to contain 
the same subject, like Amazon shopping site, etc. 

• We filter the groups based on the inter-image similarity to remove the low-quality 
clusters containing highly different images. 

• Re-Annotating Text Caption 

• The crawled alt text is noisy, we group these images to generate caption jointly
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How is the clusted data quality?

A dirty picture of a window seal A pair of sneakers

A pair of shorts A gold cross with diamonds

A limousine parked in a parking lot A couple of birds standing in the water
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How is the clustered data quality?

• The data quality is reasonably good 

• The grouped images are mostly about a single subject 

• If not, it’s mostly about the same type of subject. 

• Can we use the clustered dataset to train the model? 

A limousine parked in a parking lot A limousine in a parking lot

16



How well does the trained model work?

• We train the first version to train our model 

• The model does not view the text prompt 

• Only copy-paste demonstration 

• Reason: 

• The target and demonstrations images are too similar 

• The model falls into a copy-paste local optima
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How can we make it better?

• Make the target (image, text) highly different from the demonstration! 

• How can we obtain such diverse target (image, text) pair? 

• Use LLM to imagine a new prompt 

• Then use DreamBooth to fine-tune on the demonstration and then generate.
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Apprenticeship Learning
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[V] dog

[V] dog swimming
LLM DreamBooth



Apprenticeship Learning
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Apprenticeship Learning

• DreamBooth as the experts to demonstrate the output 

• We have 2M subjects, i.e. 2M DreamBooth experts 

• Parallelized Training, each takes 5 minutes 

• We use 800 v4 TPUs and run for 1-2 week to store all the DreamBooth outputs 

• Once and for all 

•  The apprentice model (SuTI) follows the DreamBooth experts 

• Distill from millions of experts!
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Training Details

• We use the synthesized data to train the apprentice model for 1 day 

• The apprentice model learns surprisingly fast 

• Skillset of the apprentice model: 

• Stylization: changing the style of the subject 

• Recontextualization: changing the scene of the subject 

• Multi-View synthesis: changing the view perspective of the subject 

• Attribute Modification: changing the color,textual,emotion,etc of the subject  

• Compositional: Stylization + Recontextualization
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Model Outputs
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Model Outputs
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Model Outputs
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Compositional Model Outputs
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wolf plushie canine dog a back view of … 
watching a TV show 
about birds.

a back view of … 
watching a TV show.

Re-Context Re-Context + Editing

clay teapot … sitting on a glass 
table. 

… sitting on a glass table, 
surrounded by delicate 
porcelain teacups. 

duck toy a Claude Monet styled 
painting of … in the 
water.

… in the water.

Re-Context Re-Context + Style TransferRe-Context Re-Context + Accessorize

… playfully chasing a 
fox plushie.

… playfully chasing a 
fox plushie through a 
whimsical forest.

Re-Context Re-Context + Re-Context



Human Evaluation

• We collect 220 prompts regarding 30 different subjects.  

• We feed the (subject image, text) -> (prompt, ?) to different models for genertation
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Background Control
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Task Definition

• Subject Replacement 

• Replace the subject in the 
source image with the 
customised subject 

• Subject Addition 

• Add the customised subject 
to the designated position 
in a given background 
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OutputSourceSubject Images

Subject AdditionSubject Replacement
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Iteartive Mask-based In-painting

• Challenges 

• How to replace the subject differs dramatically from the target subject? 

• How to blend the added subject naturally in the designated environment? 

• Solution: 

• Iterative generation: Gradual adaptation to the customized subject
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Mask-based Inpainting

• Customized In-painting 

• Fine-tuning with 
model with [V] token 

• Subject segmentation 
mask dilation 

• In-painting guided by 
dilated mask and 
special token [V]
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Mask-based Inpainting

• Customized In-painting 

• Fine-tuning with 
model with [V] token 

• Subject segmentation 
mask dilation 

• In-painting guided by 
dilated mask and 
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Mask-based Inpainting
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Iterative Mask-based Inpainting 
• Iterative Generation 

• The output of the current 
iteration is fed to the next 
iteration as the input 

• Easy examples: one 
iteration is enough 

• Hard examples: longer 
iterations  
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Dataset Curation
• DreamEditBench:  

• Manually collect 
220 images of 22 
subjects for 
each task  

• Easy and hard 
division based 
on difference
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Experimental Results

• Human evaluation result on curated dataset
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Diverse Image Editing Tasks 
• Subject-driven Image Generation [DreamBooth, SuTI] 

• Given reference image of a subject -> target image containing the subject 

• Text-guided Image Editing [Imagic, Prompt2Prompt, InstructP2P] 

• Given an image and an instruction -> target image following the instruction 

• Subject-driven Image Editing [DreamEdit] 

• Given a subject and image -> target image containing the subject and background 

• Style-guided Image Generation [StyleDrop] 

• Given a style reference and a source image -> target image with the given style 

• Control-guided Image Generation [ControlNet] 

• Given a keypoint, bbox, pose, layout -> target image following these signal 

• Compositional multi-subject-driven Image Generation [Custom Diffusion] 

• Given reference of multiple subjects -> target image containing all of the input subjects
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Standardized Image Editing Model Evaluation
•  There are huge amount of image editing models 

• All the evaluation is done differently 

• The code and data are dispersed everywhere 

• It’s hard to keep track of all the model performance, etc 

• We plan to host a platform for Holistic Image Editing Evaluation 

• Comile a set of evaluation tasks, hire human raters 

• Standaridize the input formats 

• Continuously update the Benchmark (Like lmsys and HELM)
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Instruction-tuned Foundation model
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• Currently, specific model is designed for specific task. 

• It’s hard to maintain so many individual models 

• Can we compile all these skills into a single model? 

• We plan to develop FLAN-type instruction-tuned Image manipulation model 

• By training on a large set of image manipulation task, we hope it can generalize to new tasks 

• One difficulty now is that we need to have better foundation vision-language models 

• Encoding interleaved images and text 

• Better architecture than UNet to digest these diverse instruction inputs 
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