Towards more Controllable Text-to-Image Generation

Assistant Professor at University of Waterloo Faculty at CIFAR AI Chair **Researcher at Google Deepmind**

Jul/23/2023

Wenhu Chen

Outline

- Background and Motivation
 - Building text-to-image model with more controllability
- Subject-level Control for Text-to-Image Generation
 - Subject-driven Text-to-Image Generation via Apprenticeship Learning
 - With Hexiang Hu, William Cohen, etc at Google DeepMind
- Subject and Background-level Control for Text-to-Image Generation
 - DreamEdit: Subject-driven Image Editing
 - With Tianle Li, Max ku, Cong Wei at University of Waterloo
- Conclusion and Future Work

Background and Motivation Text-to-Image Generation

- Text-to-Image Generation has achieved great success
 - Text-image alignment is high
 - Images are creative
 - Resolution is also high
- However, it's only controlled by text
 - Text is known to be ambiguous
 - Subject, Pose, Background, View, etc

A Robo couple fine dining with Eiffel tower in the background.

Background and Motivation **Controllability in Text-to-Image Generation**

- How can we control the model to generate a specific subject
 - Subject-Level Control
 - A specific dog or a specific person in different scenarios.

- - Background Control
 - A specific scene like a garden, a yard, etc.

• How can we control the model to generate a specific subject in a specific scene

Subject-Level Control

Input images

A [V] vase buried in the sands

Milk poured into a [V] vase

Two [V] vases on a table

A [V] vase with a colorful flower bouquet

A [V] vase in the ocean

Subject and Background-Level Control

Subject

Background

Output

Outline

- Background and Motivation
 - Building text-to-image model with more controllability
- Subject-level Control for Text-to-Image Generation
 - Subject-driven Text-to-Image Generation via Apprenticeship Learning
 - With Hexiang Hu, William Cohen, etc at Google DeepMind
- Subject and Background-level Control for Text-to-Image Generation
 - DreamEdit: Subject-driven Image Editing
 - With Tianle Li, Max ku, Cong Wei at University of Waterloo
- Conclusion and Future Work

DreamBooth: Fine Tuning Text-to-Image Diffusion Models

- Finetune on 3-5 images regarding the subjects for 1000 steps.
- Maximize the diffusion model's likelihood p(
- Save the checkpoint, then use the checkpoint to generate images with [V].

DreamBooth: Fine Tuning Text-to-Image Diffusion Models

- It requires fine-tuning the model
 - It consumes a lot of time. Normally 5-10 minutes to generate 1 image, which is 50x slower than normal text-to-image generation.
 - Saving one checkpoint per subject requires lots of disk space.
 - Therefore, this approach cannot scale up

In-Context Learning for Subject-Driven image generation

- Can we avoid fine-tuning?
- A single model to ace it all: •
 - In-context demonstration without gradient descent.
 - Adapt to any subject quickly within 30 seconds.

Demonstration

[X] dog

What do we need to achieve In-Context Learning?

- We need to change the diffusion model architecture
 - The current architecture only supports image input
 - The model needs to attend to demonstration of multiple (image, text) pairs

- We also need to construct new dataset to train the model
 - ((subject image1, subject image2, ..., subject text) => (new text, new image))
 - The diffusion model attends to these subject and generalize it to new scenario

Architecture: Adding additional attention layer

UNet Downstack $f(x_t, c_p)$: a feature map

Chortai is a breed of dog

UNet UpStack $g(f(x_t, c_p), c_p)$: a full image

 x_0

Attention Text
Text

Dataset: how can we obtain such data?

- Desired format
 - image-text pairs share the same subject.

- Challenge
 - However, such data does not exist on the web!
 - The existing dataset consists of standalone (image, text) pairs.

• (text_1, Image_1), (text_2, image_2), ... (text_t, image_t), where these group of

Web Image-Text Data Clustering

- Clustering
 - We group (image, text) pairs based on their URLs
 - We assume (image, text) pairs mined from the same URL are more likely to contain the same subject, like Amazon shopping site, etc.
 - We filter the groups based on the inter-image similarity to remove the low-quality clusters containing highly different images.

- Re-Annotating Text Caption
 - The crawled alt text is noisy, we group these images to generate caption jointly

How is the clusted data quality?

A limousine parked in a parking lot

A gold cross with diamonds

A pair of sneakers

A couple of birds standing in the water

A pair of shorts

A dirty picture of a window seal

How is the clustered data quality?

- The data quality is reasonably good
 - The grouped images are mostly about a single subject
 - If not, it's mostly about the same type of subject.

Can we use the clustered dataset to train the model?

A limousine parked in a parking lot

A limousine in a parking lot

How well does the trained model work?

- We train the first version to train our model
 - The model does not view the text prompt
 - Only copy-paste demonstration

- Reason:
 - The target and demonstrations images are too similar
 - The model falls into a copy-paste local optima

How can we make it better?

• Make the target (image, text) highly different from the demonstration!

A pair of shorts

- How can we obtain such diverse target (image, text) pair?
 - Use LLM to imagine a new prompt

A man wearing a pair of shorts

• Then use DreamBooth to fine-tune on the demonstration and then generate.

Apprenticeship Learning

LLM

[V] dog

[V] dog swimming

DreamBooth

swimming

Apprenticeship Learning

[V] dog

LLM

Attention

[V] dog

[V] dog swimming

DreamBooth

swimming

[V] dog swimming

Apprenticeship

swimming

Apprenticeship Learning

- DreamBooth as the experts to demonstrate the output
 - We have 2M subjects, i.e. 2M DreamBooth experts
 - Parallelized Training, each takes 5 minutes
 - We use 800 v4 TPUs and run for 1-2 week to store all the DreamBooth outputs
 - Once and for all

- The apprentice model (SuTI) follows the DreamBooth experts
 - Distill from millions of experts!

Training Details

- We use the synthesized data to train the apprentice model for 1 day • The apprentice model learns surprisingly fast
- Skillset of the apprentice model:
 - Stylization: changing the style of the subject
 - Recontextualization: changing the scene of the subject
 - Multi-View synthesis: changing the view perspective of the subject
 - Attribute Modification: changing the color, textual, emotion, etc of the subject
 - Compositional: Stylization + Recontextualization

A duck toy

A dog

Pablo Picasso

Top-down view

Rembrandt

Rene Magritte

Vincent van Gogh

Side view

Bottom view

Back view

A dog

A monster toy

Depressed

Blue

Joyous

Sleepy

Screaming

Green

Purple

Pink

Chef outfit

Ironman outfit

A dog

Police outfit

Nurse outfit

Fire-Fighter outfit

Witch outfit

Superman outfit

Angel outfit

Compositional Model Outputs

wolf plushie

... playfully chasing a fox plushie.

... playfully chasing a fox plushie through a whimsical forest.

... sitting on a glass table.

... sitting on a glass table, surrounded by delicate porcelain teacups.

Re-Context ------ **Re-Context** + Accessorize

clay teapot

canine dog

a back view of ...

watching a TV show.

Re-Context

a back view of ... watching a TV show about birds.

Re-Context + Editing

duck toy

... in the water.

a Claude Monet styled painting of ... in the water.

Re-Context — **Re-Context** + **Style Transfer**

Human Evaluation

- We collect 220 prompts regarding 30 different subjects.

Methods	Backbone	Space	Time	Subject ↑	Text ↑	Photorealism ↑	Overall ↑			
Models requiring test-time tuning										
Textual Inversion [10]	SD [25]	\$	30 mins	0.22	0.64	0.90	0.14			
Null-Text Inversion [19]	Imagen [28]	\$\$	5 mins	0.20	0.46	0.70	0.10			
Imagic [15]	Imagen [28]	\$\$\$\$	70 mins	0.78	0.34	0.68	0.28			
DreamBooth [27]	SD [25]	\$\$\$	6 mins	0.74	0.53	0.85	0.47			
DreamBooth [27]	Imagen [28]	\$\$\$	10 mins	0.88	0.82	0.98	0.77			
InstructPix2Pix [4]	SD [25]	-	10 secs	0.14	0.46	0.42	0.10			
Re-Imagen [6]	Imagen [28]	-	20 secs	0.70	0.65	0.64	0.42			
Ours: SuTI	Imagen [28]	-	30 secs	0.90	0.90	0.92	0.82			

• We feed the (subject image, text) -> (prompt, ?) to different models for generation

Outline

- Background and Motivation
 - Building text-to-image model with more controllability
- Subject-level Control for Text-to-Image Generation
 - Subject-driven Text-to-Image Generation via Apprenticeship Learning
 - With Hexiang Hu, William Cohen, etc at Google DeepMind
- Subject and Background-level Control for Text-to-Image Generation
 - DreamEdit: Subject-driven Image Editing
 - With Tianle, Max ku, Cong Wei at University of Waterloo
- Conclusion and Future Work

Background Control

Subject

Background

Output

Task Definition

- Subject Replacement
 - Replace the subject in the source image with the customised subject
- Subject Addition
 - Add the customised subject to the designated position in a given background

Subject Images

Source

Source

Output

Output

Iteartive Mask-based In-painting

- Challenges
 - How to replace the subject differs dramatically from the target subject? • How to blend the added subject naturally in the designated environment?
- Solution:
 - Iterative generation: Gradual adaptation to the customized subject

Iteration 1

Iteration 2

Iteration N

- Customized In-painting
 - Fine-tuning with model with [V] token
 - Subject segmentation mask dilation
 - In-painting guided by dilated mask and special token [V]

- Customized In-painting
 - Fine-tuning with model with [V] token
 - Subject segmentation mask dilation
 - In-painting guided by dilated mask and special token [V]

- Customized In-painting
 - Fine-tuning with model with [V] token
 - Subject segmentation mask dilation
 - In-painting guided by dilated mask and special token [V]

- Customized In-painting
 - Fine-tuning with model with [V] token
 - Subject segmentation mask dilation
 - In-painting guided by dilated mask and special token [V]

Iterative Mask-based Inpainting

- Iterative Generation
 - The output of the current iteration is fed to the next iteration as the input
 - Easy examples: one iteration is enough
 - Hard examples: longer iterations

Dataset Curation

- DreamEditBench:
 - Manually collect 220 images of 22 subjects for each task
 - Easy and hard division based on difference

Teapot

Robot Toy

Subject Replacement

Subject Addition

Experimental Results

• Human evaluation result on curated dataset

Method	Initialization	${f Subject}\uparrow$	Background↑	$\mathbf{Realistic}\uparrow$	$ $ Overall \uparrow				
Subject Replacement									
DreamBooth	-	0.543	0.0	0.707	0.072				
Customized-DiffEdit	-	0.21	0.828	0.668	0.488				
CopyPaste	COPY	1.00	0.148	0.123	0.263				
DreamEditor (1)	COPY	0.778	0.407	0.52	0.548				
DreamEditor(5)	COPY	0.817	0.505	0.54	0.606				
DreamEditor (1)	-	0.532	0.760	0.557	0.608				
DreamEditor(5)	-	0.630	0.800	0.582	0.664				
Subject Addition									
DreamBooth	-	0.477	0.0	0.635	0.067				
Customized-DiffEdit	GLIGEN	0.288	0.302	0.252	0.280				
CopyPaste	COPY	0.983	1.0	0.033	0.319				
DreamEditor (1)	COPY	0.635	0.978	0.265	0.548				
DreamEditor (5)	COPY	0.633	0.973	0.393	0.623				
DreamEditor (1)	GLIGEN	0.287	0.99	0.427	0.495				
DreamEditor (5)	GLIGEN	0.478	0.972	0.528	0.626				

Outline

- Background and Motivation
 - Building text-to-image model with more controllability
- Subject-level Control for Text-to-Image Generation
 - Subject-driven Text-to-Image Generation via Apprenticeship Learning
 - With Hexiang Hu, William Cohen, etc at Google DeepMind
- Subject and Background-level Control for Text-to-Image Generation
 - DreamEdit: Subject-driven Image Editing
 - With Tianle Li, Max ku, Cong Wei at University of Waterloo
- Conclusion and Future Work

Diverse Image Editing Tasks

- Subject-driven Image Generation [DreamBooth, SuTI]
 - Given reference image of a subject -> target image containing the subject
- Text-guided Image Editing [Imagic, Prompt2Prompt, InstructP2P]
 - Given an image and an instruction -> target image following the instruction
- Subject-driven Image Editing [DreamEdit]
 - Given a subject and image -> target image containing the subject and background
- Style-guided Image Generation [StyleDrop]
 - Given a style reference and a source image -> target image with the given style
- Control-guided Image Generation [ControlNet]
 - Given a keypoint, bbox, pose, layout -> target image following these signal
- Compositional multi-subject-driven Image Generation [Custom Diffusion]
 - Given reference of multiple subjects -> target image containing all of the input subjects

Standardized Image Editing Model Evaluation

- There are huge amount of image editing models
 - All the evaluation is done differently
 - The code and data are dispersed everywhere
 - It's hard to keep track of all the model performance, etc
- We plan to host a platform for Holistic Image Editing Evaluation
 - Comile a set of evaluation tasks, hire human raters
 - Standaridize the input formats
 - Continuously update the Benchmark (Like Imsys and HELM)

Instruction-tuned Foundation model

- Currently, specific model is designed for specific task.
 - It's hard to maintain so many individual models
- Can we compile all these skills into a single model?
 - We plan to develop FLAN-type instruction-tuned Image manipulation model
 - By training on a large set of image manipulation task, we hope it can generalize to new tasks
- One difficulty now is that we need to have better foundation vision-language models
 - Encoding interleaved images and text
 - Better architecture than UNet to digest these diverse instruction inputs

