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Meaning
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Linguists can barely reach an agreement on the definition of “meaning”



Meaning
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1. Simple
2. Straightforward

Raw-String

Bag of words
Unigram/Bigram
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Meaning
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1. Simple
2. Straightforward

Raw-String Formal Semantics

1. Compositional
2. Explainable

Real-valued Vector

1. Data-Drive
2. Computation 

Efficient

Word2Vec/Glove
BERT

Bag of words
Unigram/Bigram

Lambda Calculus
Montague Semantics



Meaning
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What aspects do you need the meaning representation to capture?



Meaning
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What aspects do you need the meaning representation to capture?

Can it lean meaning or just 
similarity between meaning?

Can it lean grounded meaning 
or learn lexical meaning?



1. Raw-String Representation
- Cannot directly link to the external world knowledge.
- Cannot combine pieces of knowledge together to perform inference.
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Utterance1: John has an apple
Utterance2: John has a banana

Utterance: John has an apple 
and a banana.



1. Raw-String Representation
- Assuming we want to build an NLP system to understand math questions? 

a. Such system cannot leverage the mathematical knowledge.
b. The sample complexity becomes extremely high.
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Math
World

Utterance: What is the largest prime less than 10?



2. Formal Semantics (Montague)
- We construct the meaning of natural language in terms of variables, 

predicates, arguments.
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2. Formal Semantics (Montague)
- We construct the meaning of natural language in terms of variables, 

predicates, arguments.
- Formal Semantics aim to use explicit and grounded meaning representation 

to convey information.
- The formal semantics can help us understand human language from a 

mathematical logic perspective.
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2. Formal Semantics (Montague)
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Utterance: What is the largest prime less than 10?

Math
World



3. Vector Representation
- Data-driven learning process
- Suitable for deep learning framework
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3. Vector Representation
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Utterance Behavior

We don’t need to worry about the structure of computation in the middle



3. Vector Representation
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Tight coupling between machine learning and representation means there’s always risk 
that some new semantic phenomenon arises and suddenly our model is useless

Utterance Behavior



Evaluation Chart
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Type Meaning Similarity Meaning Grounded Meaning Lexical Meaning

String

Vector

Formal
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Type Meaning Similarity Meaning Grounded Meaning Lexical Meaning

String
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Formal Semantics
- For a long time, such an explicit meaning representation has dominated the 

research of NLP community
- Reasoning
- Perception
- Action
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Utterance Parser



Formal Semantics
- For a long time, such an explicit meaning representation has dominated the 

research of NLP community
- Reasoning
- Perception
- Action
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Utterance Parser

Semantic Form1

Semantic Form2

Semantic Form3

Question
Answering

Language
Navigation

Textual 
Inference



List of Semantic Forms
- Introduction of formal semantics

- Lambda Calculus (Turing 1937)
- Combinatory categorial grammar (CCG) (Steedman et al. 1996, 2000)
- Weighted linear CCG (Clark & Currant et. al 2007)
- Dependency-based compositional semantics (DCS) (Liang et al. 2011)
- Lambda DCS (Liang et al. 2013)
- Abstract Meaning Representation (Banarescu et al. 2013)
- Domain Specific Languages (DSL)

- Functional program semantics (Liang et al. 2017, Dawn et al. 2018)
- SQL, etc (Zhong et al. 2017, Yu et al. 2018)
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Semantic Forms
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Yoav et. al, Learning Compact Lexicons for CCG Semantic Parsing, 2014
Yoav et. al, Weakly Supervised Learning of Semantic Parsers for Mapping Instructions to Actions, 2013
Luke et. al, Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars, 2005
Steedman et. al, Surface Structure and Interpretation. 1996
Steedman et. al, The Syntactic Process. 2000

- Combinatory Categorial Grammar
- Definition
- Rules
- Learning

- Dependency-based compositional semantics
- Definition
- Rules
- Learning

- Neural Symbolic Machine (Functional-Program)
- Definition
- Learning



Combinatory Categorial Grammar
- Categorial Formalism

- Compositional
- Puts information on the words
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structure.
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Combinatory Categorial Grammar
- Categorial Formalism

- Compositional
- Puts information on the words

- Transparent interface between syntax and semantics
- Including Predicate-argument structure, quantification and information 

structure.
- Same expressive power as lambda calculus.
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- Basic Building Block
- Capture Syntactic and Semantic Information Jointly

CCG Categories
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ADJ :ADJ



- Basic Building Block
- Capture Syntactic and Semantic Information Jointly

CCG Categories

34

Syntax ADJ Semantic:



- Primitive symbols: N, S, NP, ADJ and PP
- Syntactic combination operation (/,\)
- Slashes specify argument order

CCG Categories
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Syntax ADJ Semantic:

Syntax (S\NP)/ADJ Semantic:

Syntax NP SemanticS:



- Pair words and phrases with meaning
- Meaning captured by a CCG category

CCG Lexical Entries
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Natural 
Language

fun

 CCG Category

|- ADJ:



- Pair words and phrases with meaning
- Meaning captured by a CCG category

CCG Lexical Entries
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fun ADJ:

(S\NP)/ADJ:

CCG NP:                   CCG

fun

is

|-

|-

|-



- Equivalent to function application

- Two direction of application

CCG Operations
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- Equivalent to function application

- Two direction of application

CCG Operations
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Argument Function Result



- Use Lexicon to match words and phrases with their CCG categories

- Combine categories using operators

CCG Parsing
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- Use Lexicon to match words and phrases with their CCG categories

- Combine categories using operators

CCG Parsing
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Lexicon Problem
- Key component of CCG
- Same words often paired with many different categories
- Difficult to learn from limited data
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Lexicon Problem
- Key component of CCG
- Same words often paired with many different categories
- Difficult to learn from limited data
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The house dog

The dog of the house

house |- ADJ:

house |- N:



Factored Lexicons
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house |- N:

house |- ADJ:

garden |- N:

Similar



Factored Lexicons
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house |- N:

house |- ADJ:

garden |- N:

Lexemes

(garden, {garden})
(house, {house})

Templates



Factored Lexicons
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Compress



Factored Lexicons
- Capture systematic variations in word usage
- Each variation can then be applied to compact units in lexical matching
- Abstracts the compositional nature of the word
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Learning (Data)
- (Natural Language, Lambda Form)
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Learning (Structure Prediction)
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Lexicon Combinators
Predefined

Log-Linear



Learning (Log-Linear Scorer)
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Learning (Log-Linear Scorer)
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GENLEX
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Latent



GENLEX
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Lexical Generation Procedure

Given:
Sentence 
Validation Function 
Log-Linear Model 
Lexicon 



GENLEX
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Lexical Generation Procedure Lexemes

(garden, {garden})
(house, {house})

Templates

Lexicon

Overly
Generate

Given:
Sentence 
Validation Function 
Log-Linear Model 
Lexicon 



GENLEX
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Lexical Generation Procedure

Given:
Sentence 
Validation Function 
Log-Linear Model 
Lexicon 

Lexicon

Prune



Unified Learning Algorithm
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Unified Learning Algorithm
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Iterate over data



Lexical generation
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Generate a large set of 
potential lexical entries



Lexical generation
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Get top parses



Lexical generation
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Get lexical entries from 
highest scoring 

valid parses



Lexical generation
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Update model’s lexicon



Update parse scorer 
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Re-parse parsers and 
divide them into 

“good” and “bad” ones



Update parse scorer 

64

Pick the “good” and 
“bad” parsers violating 

the margin



Update parse scorer 

65

Update towards ‘good’ 
parses and against 

‘bad’ parses



Update parse scorer 

66Output Lexicon &
Log-Linear Model



Semantic Forms

67

Liang et. al, Learning dependency-based compositional semantics, 2011
Liang et. al, Lambda dependency-based compositional semantics, 2013
Jonathan et. al, Semantic parsing on Freebase from question-answer pairs, 2013
Jonathan et. al, Semantic parsing via paraphrasing, 2014

- Combinatory Categorial Grammar
- Definition
- Rules
- Learning

- Dependency-based compositional semantics
- Definition
- Rules
- Learning

- Neural Symbolic Machine (Functional-Program)
- Definition
- Learning



Dependency-based Compositional Semantics
- Weakness of CCG Parse

- Too much hand-coded rules for lexicon construction.
- Learning algorithm is complicated.
- The grammar rules are too strict.
- Learning requires annotating logic form.
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Dependency-Based Compositional Semantics (DCS)
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   DCS

major cities in CA



Dependency-Based Compositional Semantics (DCS)
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   DCS

major cities in CA

Predicate



Dependency-Based Compositional Semantics (DCS)
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   DCS

major cities in CA

1st elem of 
“city” equals 
1st elem of 
“major”



Dependency-Based Compositional Semantics (DCS)
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DCS

Weak-Supervision

Few hand-coded lexical rules

Align Syntactic & Semantic 



Strong vs. Weak Supervision
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Strong vs. Weak Supervision
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Lexicon vs. Triggers

75

requires strict grammar 
rule during parsing and 
harsh type constraint

CCG



Lexicon vs. Triggers
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{(city, city),(city, state),(city, river), . . . }

requires strict grammar 
rule during parsing and 
harsh type constraint

CCG DCS

requires only trigger 
words for predicates 
without grammar rule



Syntactic & Semantic Alignment
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city

major

amod

CA

nmod

in
case

Utterance: major cities in CA

Dependency
Parsing



Syntactic & Semantic Alignment
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city

major

amod

CA

nmod

in
case

Utterance: major cities in CA

Dependency
Parsing

Dependency-based
Compositional Semantics



Parsing: Lexical Triggers
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Parsing: Lexical Triggers
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Parsing: Predicates to DCS Trees (DP)
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Parsing: Predicates to DCS Trees (DP)
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Parsing: Predicates to DCS Trees (DP)
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Denotation
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Assuming we have our world knowledge containing 1) 
unary predicates 2) binary predicates in a database.



Denotation
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How can we assign values to different nodes?

?

?

?



Denotation
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Constraint 1: the value in the each node should 
come from its corresponding predicate table.



Denotation
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Constraint 2: the assignment of adjacent nodes 
need to meet the requirement in the edge.



Constraint Satisfaction Problem
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A DCS tree assignment becomes a constraint satisfaction problem (CSP)



Constraint Satisfaction Problem
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A DCS tree assignment becomes a constraint satisfaction problem (CSP)
Dynamic Programming => time complexity = O(#node) 



Learning
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Learning
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Learning
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Semantic Forms
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Liang, Chen et al. Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision. 2017
Liang, Chen et al. Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing. 2018
Agarwal et al. Learning to Generalize from Sparse and Underspecified Rewards. 2019

- Combinatory Categorial Grammar
- Definition
- Rules
- Learning

- Dependency-based compositional semantics
- Definition
- Rules
- Learning

- Neural Symbolic Machine (Functional-Program)
- Definition
- Learning



Neural Symbolic Machine
- Weakness of traditional Semantic Parsing

- The previous methods heavily rely on the predicate mapping, the mapping procedure 
is based on rules. 

- The coverage is problematic when dealing with more complex utterance.
- The previous frameworks are dominated by the composition rules enforced as prior, 

only few parameters to learn.
- The symbolic executor and the ranking model are separated without interaction.
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Neural Symbolic Machine
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Neural Symbolic Machine
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NSM

Simplified Domain Specific Language

Almost no rules/triggers required

Interacted Learning & Search

Learning-driven framework



Domain Specific Language
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Domain Specific Language
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CCG DCS DSL

Evolution

1. CCG/DCS are both general-purpose 
semantic form.

2. Evolve gradually towards more 
domain-specific languages.

3. Sacrifice some generalization, but 
greatly simplify the induction 
procedure.

Loose Loose



Function definitions
- (Hop v p): entities reached from v using relation p
- (ArgHop v1 v2 p): entities in v1 from which v2 can be reached using relation p
- (ArgMin v n): entities in v which have the lowest number in field n
- (ArgMax v n): entities in v which have the highest number in field n
- …
- (Count v): number of entities in v
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Compositionality
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(USA) CityIn

(Hop v0 CityIn)

(Argmax v1 Population)

Population

x: Largest city in the US => y: NYC



Memory-aided Sequence
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(USA) CityIn (Hop v0 CityIn) (Argmax v1 Population)

x: Largest city in the US => y: NYC

v0 (USA)

v1 (Hop ...)

v0 (USA)

The graph structure is flattened as sequence



Large Search Space

102

( Argmax v1 Population )

Hop

Count

v0 Size

Elevation



Compiler-aided prune

103

( Argmax v1 Population )

Hop

Count

v0 Size

Elevation

Code assistance



Semantic Parsing as Seq-to-Seq
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Semantic Parsing as Seq-to-Seq
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Semantic Parsing as Seq-to-Seq
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Semantic Parsing as Seq-to-Seq
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Memory Enc-Dec Model
- Overall model is conditional distribution over all token sequences.
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Memory Enc-Dec Model
- Overall model is conditional distribution over all token sequences.

- NSM models the probability at each time step                      conditioned on 
previous output tokens and utterance
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Memory Enc-Dec Model
- Overall model is conditional distribution over all token sequences.

- NSM models the probability at each time step                      conditioned on 
previous output tokens and utterance

- NSM uses interpreter to aid the decoder by removing impossible tokens at 
each step to dramatically shrink search space.
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Memory Enc-Dec Model
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Syntactic Constraint 
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Semantic Constraint
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Augmented REINFORCE
- REINFORCE (explore)
- Iterative Maximum Likelihood (exploit)
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Wrap up
- Formal Semantics does have many advantages like strong compositionality, 

explainability.
- However, the annotation effort or rigid structure makes it hard to scale up to 

large-scale domains or more realistic datasets.
- The vectorized representation in Deep Learning is still the favorable by the 

community.
- How to neuralize the formal semantics and apply it to modern architecture 

remains an open problem.
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My Work
1. Natural Language Understanding on Structured Data

a. Relation Question Answering on Knowledge Graph (Chen et al. NAACL 18)
b. Table-based Fact Verification on semi-structured table (Chen et al. Arxiv)
c. Multi-model Question Answering on structured scene graph (Chen et al. Arxiv)

2. Natural Language Generation on Structured Data
a. Semantically conditioned dialog generation on structured semantic form (Chen et al. ACL 19)
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Open Question

- Philosophical problem
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Meaning

Language Inference

Machine Translation

Summarization

Meaning serves for the success of downstream tasks



Open Question

- Philosophical problem
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Meaning

Language Inference

Machine Translation

Summarization

If we can already achieve high accuracy, why do we still 
need to care about meaning?


