
Lecture 9: Markov Decision Processes
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science
CIFAR AI Chair at Vector Institute

2024-6-6

Outline

§ Course logistics

§ Introduction to Reinforcement Learning

§ Markov Decision Processes

§ Value Iteration

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 2

§ Traditional computer science
§ Program computer for every task

§ New paradigm
§ Provide examples to machine
§ Machine learns to accomplish tasks based on examples

Machine Learning

PAGE 3CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart

§ Success mostly due to supervised learning
§ Bottleneck: need lots of labeled data
§ Limitation: mimic data

§ Alternatives
§ Unsupervised, semi-supervised, self-supervised learning
§ Transfer learning, domain adaptation, meta-learning
§ Reinforcement Learning

Machine Learning

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 4

§ Reinforcement learning is also known as
§ Optimal control
§ Approximate dynamic programming
§ Neuro-dynamic programming

§ Wikipedia: reinforcement learning is an area of machine learning
inspired by behavioural psychology, concerned with how software
agents ought to take actions in an environment so as to maximize
some notion of cumulative reward.

What is Reinforcement Learning?

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 5

§ Negative reinforcements
§ Pain and hunger

§ Positive reinforcements
§ Pleasure and food

§ Reinforcements
used to train animals

§ Let’s do the same with computers

Animal Psychology

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 6

Agent

Environment

State Reward Action

Goal: Learn to choose actions that maximize rewards

Reinforcement Problem

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 7

Contextual Bandits

Marketing
ad placement,
recommender systems

Loyalty programs
personalized offers

Price management
airline seat pricing
cargo shipment pricing
food pricing

Optimal design
interface personalization

Sequential decision Making

Automated trading
Stocks, energy

Optimization
Path planning
Routing
Energy consumption

Control
Robotics
Autonomous driving

Bayesian Optimization

Hyperparameter optimization

Troubleshooting
 Customer assistance

Diagnostics
Fault detection

Design of experiments
Drug design
Material design

Less Complex More Complex

Sample Industrial Use Cases

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 8

§ Agent: recommender system
§ Environment: user
§ State: context, past

recommendations and
feedback

§ Action: recommended item
§ Reward: value of user feedback

Marketing (Recommender System)

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 9

§ Agent: vehicle routing system
§ Environment: stochastic demand
§ State: vehicle location,

capacity and depot requests
§ Action: vehicle route
§ Reward: - travel costs

Operations Research (vehicle routing)

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 10

§ Agent: player
§ Environment: opponent
§ State: board configuration
§ Action: next stone location
§ Reward: +1 win / -1 loose

§ 2016: AlphaGo defeats Lee Sedol (4-1)
§ Game 2 move 37: AlphaGo plays unexpected move (odds 1/10,000)

Game Playing (Computer Go)

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 11

§ Agent: system
§ Environment: user
§ State: history of past utterances
§ Action: system utterance
§ Reward: task completion,

human feedback
Credit: https://www.twine.net/blog/what-is-reinforcement-learning-
from-human-feedback-rlhf-and-how-does-it-work/

Conversational Agents (RL from Human Feedback)

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 12

§ Agent: trading software
§ Environment: other traders
§ State: price history
§ Action: buy/sell/hold
§ Reward: amount of profit

Example: how to purchase a large # of shares in a short period of time
without affecting the price

Computational Finance (Trading)

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 13

§ Comprehensive, but challenging form of machine learning
○ Stochastic environment
○ Incomplete model
○ Interdependent sequence of decisions
○ No supervision
○ Partial and delayed feedback

§ Long term goal: continual learning

Reinforcement Learning

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 14

Components Formal definition Inventory management

States 𝑠 ∈ 𝑆 inventory levels

Actions 𝑎 ∈ 𝐴 {doNothing, orderWidgets}

Rewards 𝑟 ∈ ℝ Profit ($)

Transition model Pr(𝑠!|𝑠!"#, 𝑎!"#) Stochastic demand

Reward model Pr 𝑟! 𝑠!, 𝑎!
𝑅 𝑠!, 𝑎! = ∑$! 𝑟!Pr(𝑟!|𝑠!, 𝑎!)

𝑅 𝑠!, 𝑎! = sales – costs – storage

Discount factor 0 ≤ 𝛾 ≤ 1 𝛾 = 0.999

Horizon ℎ ∈ ℕ or ℎ = ∞ ℎ = ∞

Markov Decision Process

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 15

§ Transition model
§ Markovian: Pr 𝑠!"# 𝑠!, 𝑎!, 𝑠!$#, 𝑎!$#, … = Pr(𝑠!"#|𝑠!, 𝑎!)

§ Current inventory and order sufficient to predict future inventory
§ Stationary: Pr(𝑠!"#|𝑠!, 𝑎!) is same for all 𝑡

§ Distribution of demand same every day

§ Reward model
§ Stationary: 𝑅 𝑠!, 𝑎! = ∑! 𝑟!Pr(𝑟!|𝑠!, 𝑎!) is same for all 𝑡

§ Formula to compute profits is same every day

§ Exception: terminal reward is often different
§ In a game: 0 reward at each step and

+1/-1 reward at the end for winning/losing

Common Assumptions

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 16

§ Goal: maximize total rewards ∑:;<= 𝑅(𝑠: , 𝑎:)
Problem: if ℎ = ∞, then ∑:;<= 𝑅(𝑠: , 𝑎:) may be infinite

§ Solution 1: discounted rewards
§ Discount factor: 0 ≤ 𝛾 < 1
§ Finite utility: ∑! 𝛾!𝑅(𝑠!, 𝑎!) is a geometric sum
§ 𝛾 induces an inflation rate of 1/𝛾 − 1 (prefer utility sooner than later)

§ Solution 2: average rewards
§ More complicated computationally (beyond scope of this course)

Discounted/Average Rewards

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 17

§ Choice of action at each time step

§ Formally:

§ Mapping from states to actions: 𝜋 𝑠! = 𝑎!
§ Assumption: fully observable states

§ Allows 𝑎! to be chosen only based on current state 𝑠!

Policy

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 18

§ Policy evaluation: compute expected utility
 𝑉% 𝑠& = ∑!'&(𝛾! ∑)!"# Pr 𝑠!"# 𝑠&, 𝜋 𝑅(𝑠!"#, 𝜋 𝑠!"#)

§ Optimal policy 𝝅∗: policy with highest expected utility
 𝑉%∗ 𝑠& ≥ 𝑉% 𝑠& 	 ∀𝜋

§ Several classes of algorithms:
§ Value iteration
§ Policy iteration
§ Linear Programming
§ Search techniques

Policy Optimization

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 19

§ Value when no time left:
 𝑉%∗ 𝑠' = max

("
𝑅(𝑠', 𝑎')

§ Value with one time step left:
 𝑉#∗ 𝑠'"# = max

("#$
𝑅 𝑠'"#, 𝑎'"# + 𝛾∑)" Pr 𝑠' 𝑠'"#, 𝑎'"# 𝑉%∗(𝑠')

§ Value with two time steps left:
 𝑉*∗ 𝑠'"* = max

("#%
𝑅 𝑠'"*, 𝑎'"* + 𝛾∑)"#$ Pr 𝑠'"# 𝑠'"*, 𝑎'"* 𝑉#∗(𝑠'"#)

§ …
§ Bellman’s equation:

 𝑉*∗ 𝑠! = max
,!

𝑅 𝑠!, 𝑎! + 𝛾∑)!"# Pr 𝑠!"# 𝑠!, 𝑎! 𝑉*∗(𝑠!"#)

 𝑎!∗ = argmax
,!

𝑅 𝑠!, 𝑎! + 𝛾∑)!"# Pr 𝑠!"# 𝑠!, 𝑎! 𝑉*∗(𝑠!"#)

Value Iteration

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 20

Optimal policy 𝜋∗
 𝑛 = 0:	𝜋&∗ 𝑠 ← argmax

,
𝑅 𝑠, 𝑎 	∀𝑠

 𝑛 > 0: 𝜋-∗ 𝑠 ← argmax
,

𝑅 𝑠, 𝑎 + 𝛾 ∑)% Pr 𝑠. 𝑠, 𝑎 𝑉-$#∗ (𝑠.)	∀𝑠

NB: 𝜋∗ is non-stationary (i.e., time dependent)

valueIteration(MDP)
 𝑉&∗ 𝑠 ← max

,
𝑅(𝑠, 𝑎)	∀𝑠

 For 𝑛 = 1 to ℎ do
 𝑉-∗ 𝑠 ← max

,
𝑅 𝑠, 𝑎 + 𝛾 ∑)% Pr 𝑠. 𝑠, 𝑎 𝑉-$#∗ (𝑠.)	∀𝑠

 Return 𝑉∗

Value Iteration

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 21

 𝑅,: 𝑆 ×1 column vector of rewards for 𝑎

 𝑉-∗: 𝑆 ×1 column vector of state values

 𝑇,: 𝑆 × 𝑆 matrix of transition probabilities for 𝑎

valueIteration(MDP)
 𝑉&∗ ← max

,
𝑅,	

 For 𝑡 = 1 to ℎ do
 𝑉-∗ ← max

,
𝑅, + 𝛾𝑇,𝑉-$#∗ 	

 Return 𝑉∗

Value Iteration (Matrix Form)

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 22

1

Poor &
Unknown

+0

Poor &
Famous

+0

Rich &
Famous

+10

Rich &
Unknown

+10

S

S

S

S

A

A

A

A

1

1

½ ½½

½

½
½

½

½
½

½

𝛾 = 0.9

You own a company

In every state you must
choose between

Saving money or
Advertising

PAGE 23

A Markov Decision Process

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart

PAGE 24

1

PU
+0

PF
+0

RF
+10

RU
+10

S

S

S

S

A

A

A

A

1

1

½
½½

½

½
½

½½½

½ g = 0.9

𝒏 𝑽𝒏∗ (𝑷𝑼) 𝝅𝒏∗ (𝑷𝑼) 𝑽𝒏∗ (𝑷𝑭) 𝝅𝒏∗ (𝑷𝑭) 𝑽𝒏∗ (𝑹𝑼) 𝝅𝒏∗ (𝑹𝑼) 𝑽𝒏∗ (𝑹𝑭) 𝝅𝒏∗ (𝑹𝑭)

0 0 A,S 0 A,S 10 A,S 10 A,S
1 0 A,S 4.5 S 14.5 S 19 S
2 2.03 A 8.55 S 16.53 S 25.08 S
3 4.76 A 12.20 S 18.35 S 28.72 S
4 7.63 A 15.07 S 20.40 S 31.18 S
5 10.21 A 17.46 S 22.61 S 33.21 S

2
4

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart

Exercise: Value Iteration, No Time Left (RF State)

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 25

Exercise: Value Iteration, One Time Step Left (RF State)

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 26

§ Finite ℎ:

§ Non-stationary optimal policy
§ Best action different at each time step
§ Intuition: best action varies with the amount of time left

§ Infinite ℎ:
§ Stationary optimal policy
§ Same best action at each time step
§ Intuition: same (infinite) amount of time left at each time step
§ Problem: value iteration does infinite # of iterations

Horizon Effect

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 27

§ Assuming a discount factor 𝛾, after 𝑛 time steps,
rewards are scaled down by 𝛾O

§ For large enough 𝑛, rewards become insignificant since 𝛾O → 0

§ Solution #1:
§ pick large enough 𝑛 and run value iteration for 𝑛 steps
§ Execute policy 𝜋- found at the 𝑛!(iteration

§ Solution #2:
§ Continue iterating until 𝑉- − 𝑉-$# * ≤ 𝜖 (𝜖 is called tolerance)
§ Execute policy 𝜋- found at the 𝑛!(iteration

Infinite Horizon

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE 28

