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§ Course logistics

§ Introduction to Reinforcement Learning

§ Markov Decision Processes

§ Value Iteration
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§ Traditional computer science
§ Program computer for every task

§ New paradigm
§ Provide examples to machine
§ Machine learns to accomplish tasks based on examples

Machine Learning
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§ Success mostly due to supervised learning
§ Bottleneck: need lots of labeled data
§ Limitation: mimic data

§ Alternatives
§ Unsupervised, semi-supervised, self-supervised learning
§ Transfer learning, domain adaptation, meta-learning
§ Reinforcement Learning

Machine Learning
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§ Reinforcement learning is also known as 
§ Optimal control
§ Approximate dynamic programming
§ Neuro-dynamic programming

§ Wikipedia: reinforcement learning is an area of machine learning 
inspired by behavioural psychology, concerned with how software 
agents ought to take actions in an environment so as to maximize 
some notion of cumulative reward.

What is Reinforcement Learning?
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§ Negative reinforcements
§ Pain and hunger

§ Positive reinforcements
§ Pleasure and food

§ Reinforcements 
used to train animals

§ Let’s do the same with computers

Animal Psychology
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Agent

Environment

State Reward Action

Goal: Learn to choose actions that maximize rewards

Reinforcement Problem
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Contextual Bandits

Marketing
ad placement, 
recommender systems

Loyalty programs 
personalized offers

Price management 
airline seat pricing
cargo shipment pricing
food pricing

Optimal design 
interface personalization

Sequential decision Making

Automated trading
Stocks, energy

Optimization
Path planning
Routing
Energy consumption

Control
Robotics
Autonomous driving

Bayesian Optimization

Hyperparameter optimization

Troubleshooting
   Customer assistance

Diagnostics
Fault detection

Design of experiments
Drug design
Material design

Less Complex More Complex

Sample Industrial Use Cases
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§ Agent: recommender system
§ Environment: user
§ State: context, past 

recommendations and 
feedback

§ Action: recommended item
§ Reward: value of user feedback

Marketing (Recommender System)
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§ Agent: vehicle routing system
§ Environment: stochastic demand
§ State: vehicle location, 

capacity and depot requests 
§ Action: vehicle route
§ Reward: - travel costs

Operations Research (vehicle routing)
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§ Agent: player
§ Environment: opponent
§ State: board configuration
§ Action: next stone location
§ Reward: +1 win / -1 loose

§ 2016: AlphaGo defeats Lee Sedol (4-1)
§ Game 2 move 37: AlphaGo plays unexpected move (odds 1/10,000)

Game Playing (Computer Go)
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§ Agent: system
§ Environment: user
§ State: history of past utterances 
§ Action: system utterance
§ Reward: task completion, 

human feedback
Credit: https://www.twine.net/blog/what-is-reinforcement-learning-
from-human-feedback-rlhf-and-how-does-it-work/

Conversational Agents (RL from Human Feedback)

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart PAGE  12



§ Agent: trading software
§ Environment: other traders
§ State: price history
§ Action: buy/sell/hold
§ Reward: amount of profit

Example: how to purchase a large # of shares in a short period of time 
without affecting the price

Computational Finance (Trading)
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§ Comprehensive, but challenging form of machine learning
○ Stochastic environment
○ Incomplete model
○ Interdependent sequence of decisions
○ No supervision
○ Partial and delayed feedback

§ Long term goal: continual learning

Reinforcement Learning
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Components Formal definition Inventory management

States 𝑠 ∈ 𝑆 inventory levels

Actions 𝑎 ∈ 𝐴 {doNothing, orderWidgets}

Rewards 𝑟 ∈ ℝ Profit ($)

Transition model Pr(𝑠!|𝑠!"#, 𝑎!"#) Stochastic demand

Reward model Pr 𝑟! 𝑠!, 𝑎!
𝑅 𝑠!, 𝑎! = ∑$! 𝑟!Pr(𝑟!|𝑠!, 𝑎!) 

𝑅 𝑠!, 𝑎! = sales – costs – storage 

Discount factor 0 ≤ 𝛾 ≤ 1 𝛾 = 0.999

Horizon ℎ ∈ ℕ or ℎ = ∞ ℎ = ∞

Markov Decision Process
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§ Transition model
§ Markovian: Pr 𝑠!"# 𝑠!, 𝑎!, 𝑠!$#, 𝑎!$#, … = Pr(𝑠!"#|𝑠!, 𝑎!)

§ Current inventory and order sufficient to predict future inventory 
§ Stationary: Pr(𝑠!"#|𝑠!, 𝑎!) is same for all 𝑡

§ Distribution of demand same every day

§ Reward model
§ Stationary: 𝑅 𝑠!, 𝑎! = ∑! 𝑟!Pr(𝑟!|𝑠!, 𝑎!) is same for all 𝑡

§ Formula to compute profits is same every day

§ Exception: terminal reward is often different
§ In a game: 0 reward at each step and 

+1/-1 reward at the end for winning/losing

Common Assumptions
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§ Goal: maximize total rewards ∑:;<= 𝑅(𝑠: , 𝑎:)
Problem: if ℎ = ∞, then ∑:;<= 𝑅(𝑠: , 𝑎:) may be infinite

§ Solution 1: discounted rewards
§ Discount factor: 0 ≤ 𝛾 < 1
§ Finite utility: ∑! 𝛾!𝑅(𝑠!, 𝑎!) is a geometric sum 
§ 𝛾 induces an inflation rate of 1/𝛾 − 1 (prefer utility sooner than later)

§ Solution 2: average rewards
§ More complicated computationally (beyond scope of this course)

Discounted/Average Rewards
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§ Choice of action at each time step

§ Formally:

§ Mapping from states to actions: 𝜋 𝑠! = 𝑎!
§ Assumption: fully observable states

§ Allows 𝑎! to be chosen only based on current state 𝑠!

Policy
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§ Policy evaluation: compute expected utility
                       𝑉% 𝑠& = ∑!'&( 𝛾! ∑)!"# Pr 𝑠!"# 𝑠&, 𝜋 𝑅(𝑠!"#, 𝜋 𝑠!"# )

§ Optimal policy 𝝅∗: policy with highest expected utility
                                       𝑉%∗ 𝑠& ≥ 𝑉% 𝑠& 	 ∀𝜋

§ Several classes of algorithms:
§ Value iteration
§ Policy iteration
§ Linear Programming
§ Search techniques

Policy Optimization
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§ Value when no time left:
 𝑉%∗ 𝑠' = max

("
𝑅(𝑠', 𝑎')

§ Value with one time step left:
       𝑉#∗ 𝑠'"# = max

("#$
𝑅 𝑠'"#, 𝑎'"# + 𝛾∑)" Pr 𝑠' 𝑠'"#, 𝑎'"# 𝑉%∗(𝑠')

§ Value with two time steps left:
       𝑉*∗ 𝑠'"* = max

("#%
𝑅 𝑠'"*, 𝑎'"* + 𝛾∑)"#$ Pr 𝑠'"# 𝑠'"*, 𝑎'"* 𝑉#∗(𝑠'"#)

§ …
§ Bellman’s equation:

 𝑉*∗ 𝑠! = max
,!

𝑅 𝑠!, 𝑎! + 𝛾∑)!"# Pr 𝑠!"# 𝑠!, 𝑎! 𝑉*∗(𝑠!"#)

 𝑎!∗ = argmax
,!

𝑅 𝑠!, 𝑎! + 𝛾∑)!"# Pr 𝑠!"# 𝑠!, 𝑎! 𝑉*∗(𝑠!"#)

Value  Iteration
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Optimal policy 𝜋∗
 𝑛 = 0:	𝜋&∗ 𝑠 ← argmax

,
𝑅 𝑠, 𝑎 	∀𝑠

 𝑛 > 0: 𝜋-∗ 𝑠 ← argmax
,

𝑅 𝑠, 𝑎 + 𝛾 ∑)% Pr 𝑠. 𝑠, 𝑎 𝑉-$#∗ (𝑠.)	∀𝑠

NB: 𝜋∗ is non-stationary (i.e., time dependent)

valueIteration(MDP)
        𝑉&∗ 𝑠 ← max

,
𝑅(𝑠, 𝑎)	∀𝑠 

        For 𝑛 = 1 to ℎ do
                𝑉-∗ 𝑠 ← max

,
𝑅 𝑠, 𝑎 + 𝛾 ∑)% Pr 𝑠. 𝑠, 𝑎 𝑉-$#∗ (𝑠.)	∀𝑠

        Return 𝑉∗

Value Iteration
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  𝑅,: 𝑆 ×1 column vector of rewards for 𝑎

  𝑉-∗: 𝑆 ×1 column vector of state values

  𝑇,: 𝑆 × 𝑆  matrix of transition probabilities for 𝑎

valueIteration(MDP)
   𝑉&∗ ← max

,
𝑅,	

   For 𝑡 = 1 to ℎ do
 𝑉-∗ ← max

,
𝑅, + 𝛾𝑇,𝑉-$#∗ 	

   Return 𝑉∗

Value Iteration (Matrix Form)
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1

Poor &
Unknown

+0

Poor &
Famous

+0

Rich &
Famous

+10

Rich &
Unknown

+10

S

S

S

S

A

A

A

A

1

1

½ ½½

½

½
½

½

½
½

½

𝛾 = 0.9

You own a company

In every state you must 
choose between 

Saving money or 
Advertising
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A Markov Decision Process

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart



PAGE  24

1

PU
+0

PF
+0

RF
+10

RU
+10

S

S

S

S

A

A

A

A

1

1

½
½½

½

½
½

½½½

½ g = 0.9

𝒏 𝑽𝒏∗ (𝑷𝑼) 𝝅𝒏∗ (𝑷𝑼) 𝑽𝒏∗ (𝑷𝑭) 𝝅𝒏∗ (𝑷𝑭) 𝑽𝒏∗ (𝑹𝑼) 𝝅𝒏∗ (𝑹𝑼) 𝑽𝒏∗ (𝑹𝑭) 𝝅𝒏∗ (𝑹𝑭)

0 0 A,S 0 A,S 10 A,S 10 A,S
1 0 A,S 4.5 S 14.5 S 19 S
2 2.03 A 8.55 S 16.53 S 25.08 S
3 4.76 A 12.20 S 18.35 S 28.72 S
4 7.63 A 15.07 S 20.40 S 31.18 S
5 10.21 A 17.46 S 22.61 S 33.21 S

2
4

CS486/686 Spring 2024 - Lecture 9 - Pascal Poupart



Exercise: Value Iteration, No Time Left (RF State)
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Exercise: Value Iteration, One Time Step Left (RF State)
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§ Finite ℎ: 

§ Non-stationary optimal policy
§ Best action different at each time step
§ Intuition: best action varies with the amount of time left

§ Infinite ℎ: 
§ Stationary optimal policy
§ Same best action at each time step
§ Intuition: same (infinite) amount of time left at each time step
§ Problem: value iteration does infinite # of iterations

Horizon Effect
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§ Assuming a discount factor 𝛾, after 𝑛 time steps, 
rewards are scaled down by 𝛾O

§ For large enough 𝑛, rewards become insignificant since 𝛾O → 0

§ Solution #1: 
§ pick large enough 𝑛 and run value iteration for 𝑛 steps
§ Execute policy 𝜋- found at the 𝑛!( iteration

§ Solution #2: 
§ Continue iterating until 𝑉- − 𝑉-$# * ≤ 𝜖    (𝜖 is called tolerance)
§ Execute policy 𝜋- found at the 𝑛!( iteration

Infinite Horizon
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