Neural Networks - Part 3

Wenhu Chen

Lecture 8

CS 486/686: Intro to AI Lecturer: Wenhu Chen 1 / 47

[Batched Gradient Descent](#page-3-0)

[Momentum](#page-17-0)

[Adaptive Method](#page-34-0)

[Adam Optimizer](#page-44-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 2 / 47

- ▶ Stochastic Gradient Descent
- ▶ Momentum Method and the Nesterov Variant
- ▶ Adaptive Learning Methods (AdaGrad, RMSProp)
- ▶ Adaptive Moments (Adam)

[Batched Gradient Descent](#page-3-0)

[Momentum](#page-17-0)

[Adaptive Method](#page-34-0)

[Adam Optimizer](#page-44-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 4 / 47

Optimization

- ▶ We've seen back-propagation as a method for computing gradients.
- ▶ Let's see a family of first-order optimization methods.

Gradient Descent

Algorithm 1 Batch Gradient Descent at Iteration k

Require: Learning rate ϵ_k

Require: Initial Parameter θ

- 1: while stopping criteria not met do
- Compute gradient estimate over N examples: $2:$

3:
$$
\hat{\mathbf{g}} \leftarrow +\frac{1}{N} \nabla_{\theta} \sum_{i} L(f(\mathbf{x}^{(i)}; \theta), \mathbf{y}^{(i)})
$$

4: Apply Update:
$$
\theta \leftarrow \theta - \epsilon \hat{\mathbf{g}}
$$

5: end while

- ▶ Positive: Gradient Estimates are stable
- ▶ Negative: Need to compute the gradients over the entire training for one update.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 6 / 47

Gradient Descent

CS 486/686: Intro to AI Lecturer: Wenhu Chen 7 / 47

Gradient Descent

CS 486/686: Intro to AI Lecturer: Wenhu Chen 8 / 47

Algorithm 2 Stochastic Gradient Descent at Iteration k **Require:** Learning rate ϵ_k **Require:** Initial Parameter θ 1. while stopping criteria not met do Sample example $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$ from training set $2:$ $3²$ Compute gradient estimate: 4: $\hat{\mathbf{g}} \leftarrow + \nabla_{\theta} L(f(\mathbf{x}^{(i)}; \theta), \mathbf{y}^{(i)})$ 5: Apply Update: $\theta \leftarrow \theta - \epsilon \hat{\mathbf{g}}$ 6: end while

 \blacktriangleright ϵ_k is the learning rate.

▶ Sufficient Condition to guarantee convergence:

$$
\sum_{k=1} \epsilon_k < \infty \ \& \ \sum_{k=1} \epsilon^2 < \infty
$$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 9 / 47

 \blacktriangleright In practice the learning rate is decayed linearly till iteration τ

$$
\epsilon_k = (1 - \alpha)\epsilon_0 + \alpha \epsilon_\tau
$$

with $\alpha = \frac{k}{\tau}$ τ

- \triangleright τ is usually set to the number of iterations needed for a large number of passes through the data
- \blacktriangleright ϵ_{τ} should roughly be set to a small number.

- ▶ Potential Problem: Gradient estimates can be very noisy
- ▶ Obvious Solution: Use large mini-batches
- ▶ Advantage: Computation time per update does not depend on the number of training examples N
- ▶ This allows convergence on extremely large datasets

CS 486/686: Intro to AI Lecturer: Wenhu Chen 12 / 47

CS 486/686: Intro to AI Lecturer: Wenhu Chen 13 / 47

CS 486/686: Intro to AI Lecturer: Wenhu Chen 14 / 47

CS 486/686: Intro to AI Lecturer: Wenhu Chen 15 / 47

CS 486/686: Intro to AI Lecturer: Wenhu Chen 16 / 47

Batch Gradient Descent

▶ Batch Gradient Descent:

$$
\hat{g} \leftarrow +\frac{1}{N} \nabla_{\theta} \sum_{i} L(f(x^{(i)}; \theta), y^{(i)})
$$

$$
\theta \leftarrow \theta - \epsilon \hat{g}
$$

$$
\hat{g} \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})
$$

$$
\theta \leftarrow \theta - \epsilon \hat{g}
$$

[Batched Gradient Descent](#page-3-0)

[Momentum](#page-17-0)

[Adaptive Method](#page-34-0)

[Adam Optimizer](#page-44-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 18 / 47

What's wrong with SGD

- ▶ Momentum is an extension of gradient descent optimization, which builds inertia in a search direction to overcome local minima and oscillation of noisy gradients. It's based on the same concept of momentum in physics.
- \triangleright With gradient descent, a weight update at time t is given by the learning rate and gradient at that exact moment. It means that the previous steps are not considered in the next iteration.
- \blacktriangleright Two issues:
	- ▶ Unlike convex functions, a non-convex function can have many local minima, the gradient becomes so small to get stuck
	- ▶ Gradient descent can be noisy with many oscillations which results in a larger number of iterations needed to reach convergence

- ▶ Momentum is able to solve both of these issues buy using an exponentially weighted average of the gradients to update the weights at each iteration.
- ▶ This method also prevents gradients of previous iterations to be weighted equally. With an exponentially weighted average, recent gradients are given more weight than previous ones.

Example

To demonstrate the use of momentum in the context of gradient descent, minimize the following function:

$$
g_i = \nabla_{\theta} f(\theta_{i-1}) = 1.2\theta_{i-1}^3 - 0.3\theta_{i-1}^2 - 4\theta_{i-1} - 0.8
$$

$$
\theta_i = \theta_{i-1} - \epsilon * g_i
$$

- ▶ How do we try and solve this problem?
- Introduce a new variable v , the velocity
- \blacktriangleright We think of v as the direction, and speed by which the parameters move as the learning dynamics progress
- \triangleright The velocity is an exponentially decaying moving average of the negative gradients:

$$
v_i = \alpha v_{i-1} - \epsilon \nabla_{\theta} f(\theta_{i-1})
$$

 \triangleright $\alpha \in [0, 1)$, Update rule: $\theta_i \leftarrow \theta_{i-1} + v_i$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 23 / 47

$$
g_i = \nabla_{\theta} f_i(\theta_{i-1}) = 1.2\theta_{i-1}^3 - 0.3\theta_{i-1}^2 - 4\theta_{i-1} - 0.8
$$

$$
v_i = \alpha v_{i-1} - \epsilon g_i
$$

$$
\theta_i = \theta_{i-1} + v_i
$$

Escaping the local minima with momentum, and then settling down to the global minima.

▶ Velocity Term:

$$
\boldsymbol{v} = \alpha \boldsymbol{v} - \epsilon \nabla_{\theta} (L(f(\boldsymbol{x}^{(I)}; \theta), \boldsymbol{y}^{(i)}))
$$

▶ Update Term:

$$
\theta_i = \theta_{i-1} + \boldsymbol{v}
$$

- \blacktriangleright The velocity accumulates the previous gradients
- \blacktriangleright What is the role of α ?
	- If α is larger than ϵ the current update is more affected by the previous gradients.
	- \blacktriangleright Usually values for α are set high

CS 486/686: Intro to AI Lecturer: Wenhu Chen 27 / 47

- \triangleright In SGD, the step size was the norm of the gradient scaled by the learning rate, which is $\epsilon ||q||$.
- ▶ While using momentum, the step size will also depend on the norm of a sequence of gradients.
- \blacktriangleright The step size becomes:

$$
\epsilon||g_1|| + \alpha \epsilon ||g_2|| + \alpha^3 \epsilon ||g_3|| + \cdots + \alpha^K \epsilon ||g_K||
$$

- ▶ Therefore, the stepsize is roughly $\epsilon \frac{||\hat{g}||}{1-\alpha}$ $1-\alpha$
- If $\alpha = 0.9$, multiply the maximum speed by 10 relative to the current gradient direction.

SGD with Momentum

Algorithm 2 Stochastic Gradient Descent with Momentum Require: Learning rate ϵ_k **Require:** Momentum Parameter α **Require:** Initial Parameter θ **Require: Initial Velocity v** 1: while stopping criteria not met do Sample example $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$ from training set \mathcal{D} $3²$ Compute gradient estimate: 4: $\hat{\mathbf{e}} \leftarrow + \nabla_{\theta} L(f(\mathbf{x}^{(i)}; \theta), \mathbf{v}^{(i)})$ Compute the velocity update: $5:$ 6: $\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \hat{\mathbf{g}}$ Apply Update: $\theta \leftarrow \theta + \mathbf{v}$ $7:$ 8: end while

Nesterov Momentum

- ▶ Another approach: First take a step in the direction of the accumulated gradient
- ▶ Then calculate the gradient and make a correction

accumulated gradient

Nesterov Momentum

- \triangleright Another approach: First take a step in the direction of the accumulated gradient
- \blacktriangleright Then calculate the gradient and make a correction

Nesterov Momentum

- \triangleright Another approach: First take a step in the direction of the accumulated gradient
- ▶ Then calculate the gradient and make a correction

Nestorv Momentum

▶ Recall the velocity term in the Momentum method:

$$
\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \nabla_{\theta} (L(f(\boldsymbol{x}^{(i)};\theta), \boldsymbol{y}^{(i)}))
$$

▶ Nesterov Momentum:

$$
\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \nabla_{\theta} (L(f(x^{(i)}; \theta + \alpha \boldsymbol{v}), y^{(i)}))
$$

► Update:
$$
\theta \leftarrow \theta + \mathbf{v}
$$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 31 / 47

SGD with Nestorv Momentum

Algorithm 3 SGD with Nesterov Momentum **Require:** Learning rate ϵ **Require:** Momentum Parameter α **Require:** Initial Parameter θ **Require:** Initial Velocity v 1: while stopping criteria not met do Sample example $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$ from training set $2:$ Update parameters: $\tilde{\theta} \leftarrow \theta + \alpha \mathbf{v}$ $3:$ Compute gradient estimate: $4²$ $\hat{\mathbf{g}} \leftarrow +\nabla_{\tilde{a}} L(f(\mathbf{x}^{(i)}; \tilde{\theta}), \mathbf{y}^{(i)})$ $5:$ Compute the velocity update: $\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \hat{\mathbf{g}}$ $6¹$ $7¹$ Apply Update: $\theta \leftarrow \theta + \mathbf{v}$ 8: end while

CS 486/686: Intro to AI Lecturer: Wenhu Chen 32 / 47

[Batched Gradient Descent](#page-3-0)

[Momentum](#page-17-0)

[Adaptive Method](#page-34-0)

[Adam Optimizer](#page-44-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 33 / 47

- ▶ Till now we assign the same learning rate to all the features
- \blacktriangleright If the features vary in importance and frequency, why is this a good idea?
- ▶ It's probably not!

Nice (all features are equally important)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 35 / 47

- ▶ Downscale a model parameter by the square root of the sum of squares of all its historical values
- ▶ Parameters that have larger partial derivatives of the loss learning rates for them rapidly declined
- \triangleright The algorithm assigns higher learning rates to infrequent features, which ensures that the parameter updates rely less on frequency and more on relevance

AdaGrad (Adaptative Gradient)

Algorithm 1 Adaptative Gradient

Require: Global Learning rate ϵ , Initial Parameter θ , δ

- 1: Initialize $r=0$
- 2: while stopping criteria not met do
- 3: Sample example $(x^{(i)},y^{(i)})$ from training set
- 4: Compute gradient estimate: $\hat{g} \leftarrow + \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$
- 5: Accumulate: $r \leftarrow r + \hat{q} \odot \hat{q}$
- 6: Compute update: $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot \hat{g}$
- 7: Apply Update: $\theta \leftarrow \theta + \Delta\theta$

RMSProp (Root Mean Square)

- \triangleright AdaGrad is good when the objective is convex
- ▶ AdaGrad might shrink the learning rate too aggressively, we want to keep the history in mind.
- ▶ We can adapt it to perform better in a non-convex setting by accumulating an exponentially decaying average of the gradient
- ▶ This is an idea that we use again and again in Neural **Networks**

RMSProp (Root Mean Square)

Algorithm 2 Root Mean Square Propagation

Require: Global Learning rate ϵ , Initial Parameter ρ , θ , δ

- 1: Initialize $r=0$
- 2: while stopping criteria not met do
- 3: Sample example $(x^{(i)},y^{(i)})$ from training set
- 4: Compute gradient estimate: $\hat{g} \leftarrow + \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$
- 5: Accumulate: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 \rho)\hat{g} \odot \hat{g}$
- 6: Compute update: $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot \hat{g}$
- 7: Apply Update: $\theta \leftarrow \theta + \Delta\theta$

AdaDelta (Adative Delta)

- ▶ It is similar to RMSProp as an improvement over AdaGrad
- ▶ It completely removes the usage of hand-set learning rate
- ▶ Using the difference between current weight and the newly updated weight as the learning rate

AdaDelta (Adative Delta)

Algorithm 3 Adative Delta

Require: Initial Parameter ρ, θ, δ

- 1: Initialize $r = 0, d = 0$
- 2: while stopping criteria not met do
- 3: Sample example $(x^{(i)},y^{(i)})$ from training set
- 4: Compute gradient estimate: $\hat{g} \leftarrow + \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$
- 5: Accumulate: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 \rho) \hat{q} \odot \hat{q}$
- 6: Accumulate: $\boldsymbol{d} \leftarrow \rho \boldsymbol{d} + (1-\rho)[\Delta \theta]^2$
- 7: Compute update: $\Delta \theta \leftarrow -\frac{\delta + \sqrt{d}}{\delta + \sqrt{n}}$ $\frac{\delta+\sqrt{d}}{\delta+\sqrt{r}}\odot\hat{g}$
- 8: Apply Update: $\theta \leftarrow \theta + \Delta\theta$

[Batched Gradient Descent](#page-3-0)

[Momentum](#page-17-0)

[Adaptive Method](#page-34-0)

[Adam Optimizer](#page-44-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 43 / 47

Adam

The inspiration of Adam optimizer:

- ▶ AdaGrad (Adaptive Gradient Algorithm) maintains a per-parameter learning rate that improves the performance on problems with sparse gradients
- ▶ RMSProp (Root Mean Square Propagation) also maintains per-parameter learning rates that are adapted based on the average of recent magnitudes of the gradients for the weight.
- ▶ Momentum Method can maintain a velocity term to keep track of the history gradients.

Adam: ADAptive Moments

Algorithm 4 ADAptive Moments **Require:** Learning Rate ϵ , Decay rates ρ_1 , ρ_2 , θ , δ 1: Initialize $s = 0$, $r = 0$, time step $t = 0$ 2: while stopping criteria not met do 3: Sample example $(x^{(i)},y^{(i)})$ from training set 4: Compute gradient estimate: $\hat{g} \leftarrow + \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$ 5: $t \leftarrow t + 1$ 6: Update: $s \leftarrow \rho_1 s + (1 - \rho_1) \hat{g}$ 7: Update: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \hat{q} \odot \hat{q}$ 8: Correct Biases: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}, \hat{r} \leftarrow \frac{r}{1-\rho_2^t}$ 9: Compute Update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}}+\delta}$ 10: Apply Update: $\theta \leftarrow \theta + \Delta\theta$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 45 / 47

Performance

Adam optimizer is by far one of the most successful optimizers to achieve great performance. A standard benchmark to evaluate optimizer performance is MNIST:

CS 486/686: Intro to AI Lecturer: Wenhu Chen 46 / 47

Revisiting Learning Goals

- ▶ Stochastic Gradient Descent
- ▶ Momentum Method and the Nesterov Variant
- ▶ Adaptive Learning Methods (AdaGrad, RMSProp)
- ▶ Adaptive Moments (Adam)