
Neural Networks - Part 3

Wenhu Chen

Lecture 8

CS 486/686: Intro to AI Lecturer: Wenhu Chen 1 / 47



Outline

Learning Goals

Batched Gradient Descent

Momentum

Adaptive Method

Adam Optimizer

CS 486/686: Intro to AI Lecturer: Wenhu Chen 2 / 47



Learning Goals

▶ Stochastic Gradient Descent

▶ Momentum Method and the Nesterov Variant

▶ Adaptive Learning Methods (AdaGrad, RMSProp)

▶ Adaptive Moments (Adam)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 3 / 47



Learning Goals

Batched Gradient Descent

Momentum

Adaptive Method

Adam Optimizer

CS 486/686: Intro to AI Lecturer: Wenhu Chen 4 / 47



Optimization

▶ We’ve seen back-propagation as a method for computing
gradients.

▶ Let’s see a family of first-order optimization methods.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 5 / 47



Gradient Descent

▶ Positive: Gradient Estimates are stable

▶ Negative: Need to compute the gradients over the entire
training for one update.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 6 / 47



Gradient Descent

CS 486/686: Intro to AI Lecturer: Wenhu Chen 7 / 47



Gradient Descent

CS 486/686: Intro to AI Lecturer: Wenhu Chen 8 / 47



Stochastic Gradient Descent

▶ ϵk is the learning rate.

▶ Sufficient Condition to guarantee convergence:∑
k=1

ϵk <∞ &
∑
k=1

ϵ2 <∞

CS 486/686: Intro to AI Lecturer: Wenhu Chen 9 / 47



Stochastic Gradient Descent

▶ In practice the learning rate is decayed linearly till iteration τ

ϵk = (1− α)ϵ0 + αϵτ

with α = k
τ

▶ τ is usually set to the number of iterations needed for a large
number of passes through the data

▶ ϵτ should roughly be set to a small number.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 10 / 47



Stochastic Gradient Descent

▶ Potential Problem: Gradient estimates can be very noisy

▶ Obvious Solution: Use large mini-batches

▶ Advantage: Computation time per update does not depend on
the number of training examples N

▶ This allows convergence on extremely large datasets

CS 486/686: Intro to AI Lecturer: Wenhu Chen 11 / 47



Stochastic Gradient Descent

CS 486/686: Intro to AI Lecturer: Wenhu Chen 12 / 47



Stochastic Gradient Descent

CS 486/686: Intro to AI Lecturer: Wenhu Chen 13 / 47



Stochastic Gradient Descent

CS 486/686: Intro to AI Lecturer: Wenhu Chen 14 / 47



Stochastic Gradient Descent

CS 486/686: Intro to AI Lecturer: Wenhu Chen 15 / 47



Stochastic Gradient Descent

CS 486/686: Intro to AI Lecturer: Wenhu Chen 16 / 47



Batch Gradient Descent

▶ Batch Gradient Descent:

ĝ ← +
1

N
∇θ

∑
i

L(f(x(i); θ), y(i))

θ ← θ − ϵĝ

▶ SGD:
ĝ ← ∇θL(f(x

(i); θ), y(i))

θ ← θ − ϵĝ

CS 486/686: Intro to AI Lecturer: Wenhu Chen 17 / 47



Learning Goals

Batched Gradient Descent

Momentum

Adaptive Method

Adam Optimizer

CS 486/686: Intro to AI Lecturer: Wenhu Chen 18 / 47



What’s wrong with SGD

▶ Momentum is an extension of gradient descent optimization,
which builds inertia in a search direction to overcome local
minima and oscillation of noisy gradients. It’s based on the
same concept of momentum in physics.

▶ With gradient descent, a weight update at time t is given by
the learning rate and gradient at that exact moment. It means
that the previous steps are not considered in the next iteration.

▶ Two issues:

▶ Unlike convex functions, a non-convex function can have many
local minima, the gradient becomes so small to get stuck

▶ Gradient descent can be noisy with many oscillations which
results in a larger number of iterations needed to reach
convergence

CS 486/686: Intro to AI Lecturer: Wenhu Chen 19 / 47



Momentum

▶ Momentum is able to solve both of these issues buy using an
exponentially weighted average of the gradients to update the
weights at each iteration.

▶ This method also prevents gradients of previous iterations to
be weighted equally. With an exponentially weighted average,
recent gradients are given more weight than previous ones.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 20 / 47



Example

To demonstrate the use of momentum in the context of gradient
descent, minimize the following function:

y = 0.3x4 − 0.1x3 − 2x2 − 0.8x

CS 486/686: Intro to AI Lecturer: Wenhu Chen 21 / 47



Example cont.

gi = ∇θf(θi−1) = 1.2θ3i−1 − 0.3θ2i−1 − 4θi−1 − 0.8

θi = θi−1 − ϵ ∗ gi

Iteration gi θi
1 -18.2 -1.885
2 -2.36 -1.76
3 -1.2 -1.70
4 -0.78 -1.66
... ... ...
99 0.0002 -1.586

CS 486/686: Intro to AI Lecturer: Wenhu Chen 22 / 47



Example cont.

▶ How do we try and solve this problem?

▶ Introduce a new variable v, the velocity

▶ We think of v as the direction, and speed by which the
parameters move as the learning dynamics progress

▶ The velocity is an exponentially decaying moving average of
the negative gradients:

vi = αvi−1 − ϵ∇θf(θi−1)

▶ α ∈ [0, 1), Update rule: θi ← θi−1 + vi

CS 486/686: Intro to AI Lecturer: Wenhu Chen 23 / 47



Example cont.

gi = ∇θfi(θi−1) = 1.2θ3i−1 − 0.3θ2i−1 − 4θi−1 − 0.8

vi = αvi−1 − ϵgi

θi = θi−1 + vi

Iteration gi vi θi
1 -18.2 0 -1.885
2 -2.36 -15.1 -1.12
3 1.61 -9.0 -0.67
4 1.39 -9.2 -0.21
... ... ... ...
99 0.0002 0.0003 2.042

CS 486/686: Intro to AI Lecturer: Wenhu Chen 24 / 47



Example cont.

Escaping the local minima with momentum, and then settling
down to the global minima.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 25 / 47



Momentum

▶ Velocity Term:

v = αv − ϵ∇θ(L(f(x
(I); θ), y(i)))

▶ Update Term:
θi = θi−1 + v

▶ The velocity accumulates the previous gradients

▶ What is the role of α?

▶ If α is larger than ϵ the current update is more affected by the
previous gradients.

▶ Usually values for α are set high

CS 486/686: Intro to AI Lecturer: Wenhu Chen 26 / 47



Momentum

CS 486/686: Intro to AI Lecturer: Wenhu Chen 27 / 47



Momentum

▶ In SGD, the step size was the norm of the gradient scaled by
the learning rate, which is ϵ||g||.

▶ While using momentum, the step size will also depend on the
norm of a sequence of gradients.

▶ The step size becomes:

ϵ||g1||+ αϵ||g2||+ α3ϵ||g3||+ · · ·+ αKϵ||gK ||

▶ Therefore, the stepsize is roughly ϵ ||ĝ||
1−α

▶ If α = 0.9, multiply the maximum speed by 10 relative to the
current gradient direction.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 28 / 47



SGD with Momentum

CS 486/686: Intro to AI Lecturer: Wenhu Chen 29 / 47



Nesterov Momentum

▶ Another approach: First take a step in the direction of the
accumulated gradient

▶ Then calculate the gradient and make a correction

accumulated gradient

correction

new gradient

CS 486/686: Intro to AI Lecturer: Wenhu Chen 30 / 47



Nesterov Momentum

▶ Another approach: First take a step in the direction of the
accumulated gradient

▶ Then calculate the gradient and make a correction

accumulated gradient

correction

new gradient

CS 486/686: Intro to AI Lecturer: Wenhu Chen 30 / 47



Nesterov Momentum

▶ Another approach: First take a step in the direction of the
accumulated gradient

▶ Then calculate the gradient and make a correction

accumulated gradient

correction

new gradient

CS 486/686: Intro to AI Lecturer: Wenhu Chen 30 / 47



Nestorv Momentum

▶ Recall the velocity term in the Momentum method:

v ← αv − ϵ∇θ(L(f(x
(i); θ), y(i)))

▶ Nesterov Momentum:

v ← αv − ϵ∇θ(L(f(x
(i); θ + αv), y(i)))

▶ Update: θ ← θ + v

CS 486/686: Intro to AI Lecturer: Wenhu Chen 31 / 47



SGD with Nestorv Momentum

CS 486/686: Intro to AI Lecturer: Wenhu Chen 32 / 47



Learning Goals

Batched Gradient Descent

Momentum

Adaptive Method

Adam Optimizer

CS 486/686: Intro to AI Lecturer: Wenhu Chen 33 / 47



Motivation

▶ Till now we assign the same learning rate to all the features

▶ If the features vary in importance and frequency, why is this a
good idea?

▶ It’s probably not!

CS 486/686: Intro to AI Lecturer: Wenhu Chen 34 / 47



Motivation

Nice (all features are equally important)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 35 / 47



Motivation

CS 486/686: Intro to AI Lecturer: Wenhu Chen 36 / 47



Motivation

▶ Downscale a model parameter by the square root of the sum
of squares of all its historical values

▶ Parameters that have larger partial derivatives of the loss -
learning rates for them rapidly declined

▶ The algorithm assigns higher learning rates to infrequent
features, which ensures that the parameter updates rely less
on frequency and more on relevance

CS 486/686: Intro to AI Lecturer: Wenhu Chen 37 / 47



AdaGrad (Adaptative Gradient)

Algorithm 1 Adaptative Gradient

Require: Global Learning rate ϵ, Initial Parameter θ, δ
1: Initialize r = 0
2: while stopping criteria not met do
3: Sample example (x(i), y(i)) from training set
4: Compute gradient estimate: ĝ ← +∇θL(f(x

(i); θ), y(i))
5: Accumulate: r ← r + ĝ ⊙ ĝ
6: Compute update: ∆θ ← − ϵ

δ+
√
r
⊙ ĝ

7: Apply Update: θ ← θ +∆θ

CS 486/686: Intro to AI Lecturer: Wenhu Chen 38 / 47



RMSProp (Root Mean Square)

▶ AdaGrad is good when the objective is convex

▶ AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind.

▶ We can adapt it to perform better in a non-convex setting by
accumulating an exponentially decaying average of the
gradient

▶ This is an idea that we use again and again in Neural
Networks

CS 486/686: Intro to AI Lecturer: Wenhu Chen 39 / 47



RMSProp (Root Mean Square)

Algorithm 2 Root Mean Square Propagation

Require: Global Learning rate ϵ, Initial Parameter ρ, θ, δ
1: Initialize r=0
2: while stopping criteria not met do
3: Sample example (x(i), y(i)) from training set
4: Compute gradient estimate: ĝ ← +∇θL(f(x

(i); θ), y(i))
5: Accumulate: r ← ρr + (1− ρ)ĝ ⊙ ĝ
6: Compute update: ∆θ ← − ϵ

δ+
√
r
⊙ ĝ

7: Apply Update: θ ← θ +∆θ

CS 486/686: Intro to AI Lecturer: Wenhu Chen 40 / 47



AdaDelta (Adative Delta)

▶ It is similar to RMSProp as an improvement over AdaGrad

▶ It completely removes the usage of hand-set learning rate

▶ Using the difference between current weight and the newly
updated weight as the learning rate

CS 486/686: Intro to AI Lecturer: Wenhu Chen 41 / 47



AdaDelta (Adative Delta)

Algorithm 3 Adative Delta

Require: Initial Parameter ρ, θ, δ
1: Initialize r = 0, d = 0
2: while stopping criteria not met do
3: Sample example (x(i), y(i)) from training set
4: Compute gradient estimate: ĝ ← +∇θL(f(x

(i); θ), y(i))
5: Accumulate: r ← ρr + (1− ρ)ĝ ⊙ ĝ
6: Accumulate: d← ρd+ (1− ρ)[∆θ]2

7: Compute update: ∆θ ← − δ+
√
d

δ+
√
r
⊙ ĝ

8: Apply Update: θ ← θ +∆θ

CS 486/686: Intro to AI Lecturer: Wenhu Chen 42 / 47



Learning Goals

Batched Gradient Descent

Momentum

Adaptive Method

Adam Optimizer

CS 486/686: Intro to AI Lecturer: Wenhu Chen 43 / 47



Adam

The inspiration of Adam optimizer:

▶ AdaGrad (Adaptive Gradient Algorithm) maintains a
per-parameter learning rate that improves the performance on
problems with sparse gradients

▶ RMSProp (Root Mean Square Propagation) also maintains
per-parameter learning rates that are adapted based on the
average of recent magnitudes of the gradients for the weight.

▶ Momentum Method can maintain a velocity term to keep
track of the history gradients.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 44 / 47



Adam: ADAptive Moments

Algorithm 4 ADAptive Moments

Require: Learning Rate ϵ, Decay rates ρ1, ρ2, θ, δ
1: Initialize s = 0, r = 0, time step t = 0
2: while stopping criteria not met do
3: Sample example (x(i), y(i)) from training set
4: Compute gradient estimate: ĝ ← +∇θL(f(x

(i); θ), y(i))
5: t← t+ 1
6: Update: s← ρ1s+ (1− ρ1)ĝ
7: Update: r ← ρ2r + (1− ρ2)ĝ ⊙ ĝ
8: Correct Biases: ŝ← s

1−ρt1
, r̂ ← r

1−ρt2

9: Compute Update: ∆θ = −ϵ ŝ√
r̂+δ

10: Apply Update: θ ← θ +∆θ

CS 486/686: Intro to AI Lecturer: Wenhu Chen 45 / 47



Performance

Adam optimizer is by far one of the most successful optimizers to
achieve great performance. A standard benchmark to evaluate
optimizer performance is MNIST:

CS 486/686: Intro to AI Lecturer: Wenhu Chen 46 / 47



Revisiting Learning Goals

▶ Stochastic Gradient Descent

▶ Momentum Method and the Nesterov Variant

▶ Adaptive Learning Methods (AdaGrad, RMSProp)

▶ Adaptive Moments (Adam)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 47 / 47


	Learning Goals
	Batched Gradient Descent
	Momentum
	Adaptive Method
	Adam Optimizer

