
Neural Networks - Part 2

Wenhu Chen

Lecture 7

CS 486/686: Intro to AI Lecturer: Wenhu Chen 1 / 37



Outline

Learning Goals

Gradient Descent in 1-Dimensional Space

Gradient Descent in High-Dimensional Space

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Wenhu Chen 2 / 37



Learning Goals

▶ Explain the steps of the gradient descent algorithm.

▶ Explain how we can modify gradient descent to speed up
learning and ensure convergence.

▶ Describe the back-propagation algorithm including the forward
and backward passes.

▶ Compute the gradient for a weight in a multi-layer
feed-forward neural network.

▶ Describe situations in which it is appropriate to use a neural
network or a decision tree.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 3 / 37



Learning Goals

Gradient Descent in 1-Dimensional Space

Gradient Descent in High-Dimensional Space

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Wenhu Chen 4 / 37



Gradient Descent

Method to find local optima of differentiable a function f

▶ Intuition: gradient tells us direction of greatest increase,
negative gradient gives us direction of greatest decrease

▶ Take steps in directions that reduce the function value

▶ Definition of derivative guarantees that if we take a small
enough step in the direction of the negative gradient, the
function will decrease in value

▶ How small is small enough?

CS 486/686: Intro to AI Lecturer: Wenhu Chen 5 / 37



Gradient Descent

Gradient Descent Algorithm:

▶ Pick an initial point x0

▶ Iterate until convergence

xt+1 = xt − γt∆f(xt) (1)

where γt is the tth step size.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 6 / 37



Gradient Descent Example

CS 486/686: Intro to AI Lecturer: Wenhu Chen 7 / 37



Gradient Descent Example

CS 486/686: Intro to AI Lecturer: Wenhu Chen 8 / 37



Gradient Descent Example

CS 486/686: Intro to AI Lecturer: Wenhu Chen 9 / 37



Gradient Descent Example

CS 486/686: Intro to AI Lecturer: Wenhu Chen 10 / 37



Gradient Descent Example

CS 486/686: Intro to AI Lecturer: Wenhu Chen 11 / 37



Gradient Descent Example

CS 486/686: Intro to AI Lecturer: Wenhu Chen 12 / 37



High-dimensional Gradient Descent Example

CS 486/686: Intro to AI Lecturer: Wenhu Chen 13 / 37



Learning Goals

Gradient Descent in 1-Dimensional Space

Gradient Descent in High-Dimensional Space

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Wenhu Chen 14 / 37



A 2-Layer Neural Network

CS 486/686: Intro to AI Lecturer: Wenhu Chen 15 / 37



A 2-Layer Neural Network

Assuming that we want the output of the 2-Layer neural network
to be close to certain target value.

Let’s assume we are doing spam classification:

The input x1 and x2 are two features: the email length x1 and
whether the email is coming from a trusted organization x2.

We have paired training data, x1, x2, y = {0, 1}.

Therefore, we can feed x1 and x2 to the neural network to obtain
its output a

(2)
1 and a

(2)
2 .

CS 486/686: Intro to AI Lecturer: Wenhu Chen 16 / 37



Neural Network Approximation

Let’s assume that a
(2)
1 denotes how likely the email is a spam and

a
(2)
2 denotes how unlikely the email is a spam.

▶ If an input email is a spam, the desired output should be

[a
(2)
1 , a

(2)
2 ] = [1, 0].

▶ If an input email is not a spam, the desired output should be

[a
(2)
1 , a

(2)
2 ] = [0, 1].

▶ If an input email is indistinguishable, the desired output

should be [a
(2)
1 , a

(2)
2 ] = [0.5, 0.5].

CS 486/686: Intro to AI Lecturer: Wenhu Chen 17 / 37



Measuring the Loss Function

Let’s assume we want to measure the discrepancy between neural
network output and the reference label. The discrepancy is also
called loss function E. For example, we can have square difference
loss as follows:

E =
∑
i

(a
(2)
i − yi)

2

We will be using E as the training signal to perform gradient
descent.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 18 / 37



Gradient Descent

“Walking downhill and always taking a step in the direction
that goes down the most.”

▶ A local search algorithm to find the minimum of a function.

▶ Steps of the algorithm:

▶ Initialize weights randomly.

▶ Change each weight in proportion to the negative of the partial
derivative of the error with respect to the weight.

W := W − η
∂E

∂W

▶ η is the learning rate.

▶ Terminate after some number of steps, when the error is small,
or when the changes get small.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 19 / 37



Why update the weight proportional to
the negative of the partial derivative?

▶ Suppose that we want to find the minimum of y = xT · x.

→ Think of x as the weight and y as the error.

▶ Start with x = x0.

▶ ∂y
∂x = 2x

▶ In what direction should we change the value of x?

→ If the gradient is positive, we want to decrease x0. If the
gradient is negative, we want to increase x0.

We want to move in the direction of the negative of the
gradient.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 20 / 37



Why update the weight proportional to
the negative of the partial derivative?

▶ Suppose that we want to find the minimum of y = xT · x.

→ Think of x as the weight and y as the error.

▶ Start with x = x0.

▶ ∂y
∂x = 2x

▶ In what direction should we change the value of x?

→ If the gradient is positive, we want to decrease x0. If the
gradient is negative, we want to increase x0.

We want to move in the direction of the negative of the
gradient.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 20 / 37



Why update the weight proportional to
the negative of the partial derivative?

▶ By what amount should we change the value of x?
What is the step size?

→ If the gradient is large, the curve is steep and we are likely
far from the minimum. We can afford to take a larger step. If
the gradient is small, the curve is flat and we are likely close
to the minimum. We want to take a smaller step.

Take a step proportional to the gradient.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 21 / 37



Visualization

when [x1, x2] are larger, there gradient ∂y
∂x also gets larger.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 22 / 37



How do we update the weights based on the data points?

▶ Gradient descent updates the weights after sweeping through
all the examples.

▶ To speed up learning, update weights after each example.

▶ Incremental gradient descent → update weights after each
example.

▶ Stochastic gradient descent → same as incremental version
except each example is chosen randomly.

→ With cheaper steps, weights become more accurate more
quickly, but not guaranteed to converge as individual examples
can move the weights away from the minimum.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 23 / 37



How do we update the weights based on the data points?

▶ Trade off learning speed and convergence.

▶ Batched gradient descent

→ update weights after a batch of examples.

batch = all the examples −→ gradient descent.

batch = one example −→ incremental gradient descent.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 24 / 37



Learning Goals

Gradient Descent in 1-Dimensional Space

Gradient Descent in High-Dimensional Space

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Wenhu Chen 25 / 37



A 2-Layer Neural Network

Let ŷ be the output of a network (i.e. prediction).
For this network, ŷ = z(2)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 26 / 37



The Backpropagation Algorithm

▶ An efficient method of calculating the gradients in a
multi-layer neural network.

▶ Given training examples (x⃗n, y⃗n) and an error/loss function
E(ŷ, y). Perform 2 passes.

▶ Forward pass: compute the error E given the inputs and
the weights.

▶ Backward pass: compute the gradients
∂E

∂W
(2)
j,k

and
∂E

∂W
(1)
i,j

.

▶ Update each weight by the sum of the partial derivatives
for all the training examples.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 27 / 37



Forward Pass for a 2-layer Network

Calculate the values of z
(1)
j and z

(2)
k and E.

a
(1)
j =

∑
i

xiW
(1)
i,j z

(1)
j = g(a

(1)
j ) (2)

a
(2)
k =

∑
j

z
(1)
j W

(2)
j,k z

(2)
k = g(a

(2)
k ) (3)

E(z(2), y) (4)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 28 / 37



Backward Pass for a 2-layer Network

Calculate the gradients for W
(1)
i,j and W

(2)
j,k .

∂E

∂W
(2)
j,k

=
∂E

∂a
(2)
k

z
(1)
j = δ

(2)
k z

(1)
j , δ

(2)
k =

∂E

∂z
(2)
k

g′(a
(2)
k ) (5)

∂E

∂W
(1)
i,j

=
∂E

∂a
(1)
j

xi = δ
(1)
j xi, δ

(1)
j =

(∑
k

δ
(2)
k W

(2)
j,k

)
g′(a

(1)
j ) (6)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 29 / 37



The recursive relationship

For unit j of layer ℓ, δ
(ℓ)
j =

∂E

∂a
(ℓ)
j

.

δ
(ℓ)
j =


∂E

∂z
(ℓ)
j

× g′(a
(ℓ)
j ), base case, j is an output unit(∑

k

δ
(ℓ+1)
k W

(ℓ+1)
j,k

)
× g′(a

(ℓ)
j ), recursive case, j is a hidden unit

(7)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 30 / 37



A concrete example of forward and backward pass

Calculate W
(2)
j,k and W

(1)
i,j given the information below.

▶ The error function is the sum of squares error.

E =
∑
k

(ŷk − yk)
2

▶ The activation function is the sigmoid function.

g(x) =
1

1 + e−x

CS 486/686: Intro to AI Lecturer: Wenhu Chen 31 / 37



The derivative of g(x)

Sigmoid Function Derivative:

∂g(x)

∂x
=

1

1 + e−x

e−x

1 + e−x
= g(x)(1− g(x))

It means that during forward propagation, we can save the
intermediate values of g(x) to directly compute ∂g(x)

∂x .

CS 486/686: Intro to AI Lecturer: Wenhu Chen 32 / 37



Learning Goals

Gradient Descent in 1-Dimensional Space

Gradient Descent in High-Dimensional Space

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Wenhu Chen 33 / 37



The recursive relationship

For the i-th layer output x(i):

∂g(x(i))

∂x(i)
=


g(x

(i)
1 )(1− g(x

(i)
1 )) 0 · · · 0

0 g(x
(i)
2 )(1− g(x

(i)
2 )) · · · 0

...
...

. . .
...

0 0 · · · g(x
(i)
d )(1− g(x

(i)
d ))


where j indexes the j-th element in the i-th vector g(x

(i)
j ).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 34 / 37



The recursive relationship

At i-th layer, assuming there are d neurons:

Through backward propagation, the derivative w.r.t to g(xi) is
denoted as δi =

∂E
∂x(i) ∈ Rd.

δi−1 =
∂E

∂xi−1
=

∂E

∂x(i)
· ∂x(i)

∂g(x(i−1))
· ∂g(x

(i−1))

∂x(i−1)

According to definition: ∂x(i)

∂g(x(i−1))
= W T

i ∈ Rd×d′ , where d′ is the

number of neurons in i− 1-th layer and d is the number of neurons
in the i-th layer.

Therefore, we can conclude:

δi−1 = δi ·W T
i · ∂g(x

(i−1))

∂x(i−1)

where δi−1 ∈ Rd′

CS 486/686: Intro to AI Lecturer: Wenhu Chen 35 / 37



The recursive relationship

Backward Propagation Algorithm:

▶ Initialize Wi for all the layers (from 1 to n).

▶ Feedforward x into neural network and save intermediate
values g(x(1)), g(x(2)), · · · .

▶ Compute δn = ∂E
∂z · ∂g(x(n))

∂x(n) .

▶ For i = n → 2; do

▶ δi−1 = δi ·WT
i · ∂g(x(i−1))

∂x(i−1)

▶ Compute ∂E
∂Wi

= g(xi−1)⊗ δi

▶ ∂E
∂W1

= x0 ⊗ δ1, where x0 is the input.

▶ Obtain all ∂E
∂Wi

for gradient descent.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 36 / 37



Revisiting Learning Goals

▶ Explain the steps of the gradient descent algorithm.

▶ Explain how we can modify gradient descent to speed up
learning and ensure convergence.

▶ Describe the back-propagation algorithm including the forward
and backward passes.

▶ Compute the gradient for a weight in a multi-layer
feed-forward neural network.

▶ Describe situations in which it is appropriate to use a neural
network or a decision tree.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 37 / 37


	Learning Goals
	Gradient Descent in 1-Dimensional Space
	Gradient Descent in High-Dimensional Space
	The Backpropagation Algorithm
	The Backpropagation Algorithm in Matrix
	Revisiting Learning Goals

