Independence and Bayesian Networks
(Part 1)
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Learning Goals

» Given a probabilistic model,
determine if two variables are unconditionally independent, or
conditionally independent given a third variable.

» Give examples of deriving a compact representation of a joint
distribution by using independence assumptions.

» Describe components of a Bayesian network.
» Compute a joint probability given a Bayesian network.

P Explain the independence relationships in the three key
structures.
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Unconditional and Conditional Independence
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(Unconditional) Independence

Definition ((unconditional) independence)
X and Y are (unconditionally) independent iff

P(X|Y) = P(X)

P(Y[X)=P(Y)
P(X AY) = P(X)P(Y)

Learning Y does NOT influence your belief about X .
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(Unconditional) Independence

Definition ((unconditional) independence)
X and Y are (unconditionally) independent iff

P(X|Y) = P(X)

P(Y[X)=P(Y)
P(X AY) = P(X)P(Y)

Learning Y does NOT influence your belief about X .
— Convert between the two equations.

To specify joint probability, it is sufficient to specify the individual
probabilities.
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(Unconditional) Independence

Definition ((unconditional) independence)
X and Y are (unconditionally) independent iff
P(X]Y) = P(X)
P(Y|X) = P(Y)
P(X NY) = P(X)P(Y)

Learning Y does NOT influence your belief about X.
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(Unconditional) Independence

Definition ((unconditional) independence)
X and Y are (unconditionally) independent iff
P(X]Y) = P(X)
P(Y|X) = P(Y)
P(X NY) = P(X)P(Y)

Learning Y does NOT influence your belief about X.

— To justify that
P(XANY)=P(X)P(Y)
we need to make four comparisons.
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Conditional Independence
Definition (conditional independence)
X and Y are conditionally independent given Z if
PX|YNZ)=P(X|2).
PY|XNZ)=P(Y|2).

P(Y ANX|Z) = P(Y|Z)P(X|Z).

Learning Y does NOT influence your belief about X
if you already know Z.
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Conditional Independence

Definition (conditional independence)
X and Y are conditionally independent given Z if

P(X|Y AZ) = P(X|2).

P(Y|XAZ)=P(Y|Z).
P(Y ANX|Z) = P(Y|Z)P(X|Z).

Learning Y does NOT influence your belief about X
if you already know Z.

— X is conditionally independent of Y given Z.
Independence does not imply conditional independence, and vice

Versa.
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Conditional Independence

Definition (conditional independence)
X and Y are conditionally independent given Z if

P(X|Y AZ) = P(X|2).
P(Y|X NZ) =P(Y|Z).
P(Y AX|Z) = P(Y|Z)P(X|Z).

Learning Y does NOT influence your belief about X
if you already know Z.
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Conditional Independence

Definition (conditional independence)
X and Y are conditionally independent given Z if

P(X|Y AZ) = P(X|2).
P(Y|X NZ) =P(Y|Z).
P(Y AX|Z) = P(Y|Z)P(X|Z).

Learning Y does NOT influence your belief about X
if you already know Z.

— To justify that
P(X A NY|Z)=P(X|Z)P(Y|Z)

we need to make eight comparisons.
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Q #1: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C'. What

is the minimum number of probabilities required to specify the
joint distribution?

(A) 3
(B) 7
(€) 8
(D) 16
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Q #1: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C'. What
is the minimum number of probabilities required to specify the

joint distribution?

(A)
(B)
(©)
(D) 1

o N W

C
D

— (C) P(A), P(B|A), P(C|AAB). 1 + 2 + 4 = 7 probabilities

Draw a graph to prove it to yourself.
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Q #1: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C'. What

is the minimum number of probabilities required to specify the
joint distribution?

(A)
(B)
(©)
(D) 1

o N W

C
D

— (C) P(A,B,C),P(—-A,B,C),--- ,P(-A,~B,~C). A total of
8 - 1 = 7 probabilities
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Q #2: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C.
Assume that A, B, and C are independent. What is the minimum
number of probabilities required to specify the joint distribution?

(A) 3
(B) 7
(€) 8
(D) 16
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Q #2: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C.
Assume that A, B, and C are independent. What is the minimum
number of probabilities required to specify the joint distribution?

— (A) P(A), P(B), P(C). 1+ 1 + 1 = 3 probabilities

Draw a graph to prove it to yourself.
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Q #3: Deriving a compact representation

Q: Consider a model with three boolean random variables,

A, B,C. Assume that A and B are conditionally independent
given C'. What is the minimum number of probabilities required to
specify the joint distribution?

(A) 4
(B) 5
(€) 7
(D)
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Q #3: Deriving a compact representation

Q: Consider a model with three boolean random variables,

A, B,C. Assume that A and B are conditionally independent
given C'. What is the minimum number of probabilities required to
specify the joint distribution?

(A) 4
(B) 5
(€) 7
(D) 1

— (B) P(C), P(A|C), P(B|C). 1 + 2 + 2 = 5 probabilities

Draw a graph to prove it to yourself.
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Q #3a: Deriving a compact representation

Q: Given the joint probability distribution about A, B, and C, how
many comparisons do we need to make to justify A and B are
independent given C?

(A) 1
(B) 4
(C) 8
(D) 6
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Q #3a: Deriving a compact representation

Q: Given the joint probability distribution about A, B, and C, how
many comparisons do we need to make to justify A and B are
independent given C?

— (C) p(B, A|C) = p(B|C) * p(A|C) and
p(B,~A|C) = p(B|C) x p(-B|C)
... A total of 8 equalities!

Is this true?
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Q #3a: Deriving a compact representation

Q: Given the joint probability distribution about A, B, and C, how

many comparisons do we need to make to justify A and B are
independent given C?

(A) 1
(B) 4
(€) 8
(D) 6
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Q #3a: Deriving a compact representation

Q: Given the joint probability distribution about A, B, and C, how
many comparisons do we need to make to justify A and B are
independent given C?

(A)

(B) 4
(€) 8
(D) 6

1

— If we already know

p(B, AIC) = p(BIC) * p(AIC); p(~B, A|C) =

p(—B|C) * p(A|C); p(B, —A|C) = p(B|C) * p(-A|C). Do we still
need to compare p(—B,—A|C) and p(=B|C) % p(—A|C)?

Probably not, the answer is (D).
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Q #3b: Deriving a compact representation

Q: Read the table to understand whether B and C are
independent given A.

Prob
0.16
0.16
0.24
0.24
0.012
0.008
0.108
0.072

T T A A A
TN A4 A w
MM AT AT O

(A) B and C are independent given A
(B) B and C are not independent given A
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Q #3b: Deriving a compact representation

Read the table to understand whether B and C are independent
given A.

Prob
0.16
0.16
0.24
0.24
0.012
0.008
0.108
0.072

Sl T B QO R Q| 4
MM A44T T o+ w
M4 4T 4T A0

» Compute p(B,C|A)
» Compute p(B|A) and p(C|A)
> Verify p(B, C|A) = p(B|A) « p(C|A)
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Q #3b: Step-by-Step Derivation p(B, C|A)

Prob
0.16
0.16
0.24
0.24
0.012
0.008
0.108
0.072

Sl T B | R R 8
i QUS| [0 I R F, )
MH4Tm AT 4740

Table: Merging p(A4, B, C).

> p(B, C’A) = p(B, C, A)/p(A)

> p(A) = (0.16 + 0.16 + 0.24 + 0.24,0.012 + 0.008 -+ 0.108 +
0.072) = (0.8,0.2)
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Q #3b: Step-by-Step Derivation p(B, C|A)

B C (A Prob

T T T 016/08=02
T F T 016/08=02
F T T 024/08=03
F F T 024/08=03
T T F 0012/02=006
T F F 0008/02=0.04
F T F 0.108/02=054
F F F 0072/02=036

Table: Computing p(B, C|A).

> p(B,C|A) =p(B,C, A)/p(A)
> p(A) = (0.8,0.2)
» p(B,C|A) is displayed in the table
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Q #3b: Step-by-Step Derivation

Prob
0.16
0.16
0.24
0.24
0.012
0.008
0.108
0.072

mmm T A >
M Hm A @
M H T AT AT AN

Table: Merge p(A, B,C)

» Marginalizing over variable C
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Q #3b: Step-by-Step Derivation p(B|A)

A B Prob
T T 032
T F 048
F T 0.02
F F 0.18

Table: Computing p(A4, B)

» Marginalizing over variable C

» Joint p(A, B) is displayed in the table
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Q #3b: Step-by-Step Derivation p(B|A)

B (A) Prob

T T 032/08=04
F T 048/08=06
T F 0.02/02=0.1
F F 0.18 /0.2=09

Table: Computing p(B|A)

» Marginalizing over variable C

» Conditional p(B|A) is displayed in the table
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Q #3b: Step-by-Step Derivation p(C|A)

Prob
0.16
0.24
0.16
0.24
0.012
0.108
0.008
0.072

mmm T A >
M H T H T H®
Mmoo

Table: Merging p(A, B,C)

» Marginalizing over variable B
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Q #3b: Step-by-Step Derivation p(C|A)

A C Prob
T T 04
T F 04
F T 0.12
F F 0.08

Table: Computing p(A4,C)

» Marginalizing over variable B

CS 486/686: Intro to Al Lecturer: Wenhu Chen 23 /53



Q #3b: Step-by-Step Derivation p(C|A)

c (A Prob

T T 04/08=05
F T 04/08=05
T F 012/02=06
F F 008/02=04

Table: Computing p(C|A)

» Marginalizing over variable B

» Computing p(C|A)
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Q #3b: Step-by-Step Derivation (Verification)
B (A) Prob C (A) Prob
T T 0.4 T T 0.5
F T 0.6 F T 0.5
T F 0.1 T F 0.6
F F 0.9 F F 0.4

B C (A Prob

T T T 05%04—=02
T F T 05%04==02
F T T 05%06==03
F F T 05*%06==03
T T F 06%01—=006
T F F 04%01==004
F T F 06%09==054
F F F 04*09==036

All of the probabilities are equal, therefore B and C are

independent given A.
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Examples of Bayesian Networks
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Inheritance of Handedness
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Car Diagnostic Network

Battery

Fuel
Gauge
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Example: Fire alarms

Situations 1

Tampering
& root causes |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Events
i
i
i
i
|
i
Sensor outputs |

& reports 3

Report: “report of people leaving building because a fire alarm went off”
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Example: Medical diagnosis of diabetes

Overweight

Patient information |

& root causes !

i
3 Medical

! difficulties & 1
. diseases |

Diastolic BP

Diagnostic tests
& symptoms
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Why Bayesian Networks
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Why Bayesian Networks?

A probabilistic model of the Holmes scenario:

» The random variables:
Earthquake, Radio, Burglary, Alarm, Watson, and Gibbon.

» # of probabilities in the joint distribution: 26 = 64.
» For example,
P(EARANBANAANW AG) =?
P(EARANBANAANW A-G) =?
. etc ...
We can compute any probability using the joint distribution, but
» Quickly become intractable as the number of variables grows.

» Unnatural and tedious to specify all the probabilities.
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Why Bayesian Networks?

A Bayesian Network
P is a compact version of the joint distribution

> takes advantage of the unconditional and conditional
independence among the variables.
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Reminder: Modelling the Holmes Scenario

— The random variables:
> B: A Burglary is happening.
> A: The alarm is going.
> W: Dr. Watson is calling.
» G: Mrs. Gibbon is calling.
> E: Earthquake is happening.

» R: A report of earthquake is on the radio news.
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A Bayesian Network for the Holmes Scenario

P(E) = 0.0003 P(R|-E) = 0.0002, P(R| E) = 0.9

P(W|-A) = 0.4
P(W| A) =08

P(G|-=A) = 0.04
P(G] A) =04

P(B) = 0.0001

P(A|-BA—-E)=0.01, P(A-BA E)=0.2
P(A| BA-E)=0.95, P(Al BA E)=0.96

How many probabilities do we need to encode the Network?
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Bayesian Network

A Bayesian Network is a directed acyclic graph (DAG).
» Each node corresponds to a random variable.

» X is a parent of Y if there is an arrow from node X to node
Y.

— Like a family tree, there are parents, children, ancestors,
descendants.

» Each node X; has a conditional probability distribution
P(X;|Parents(X;)) that quantifies the effect of the parents
on the node.
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Representing the Joint Distribution
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The Semantics of Bayesian Networks

Two ways to understand Bayesian Networks:
> A representation of the joint probability distribution

» An encoding of the conditional independence assumptions
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Representing the joint distribution

The idea is that, given a random variable X, a small set of
variables may exist that directly affect the variable's value in the
sense that X is conditionally independent of other variables given
values for the directly affecting variables.

> Start with a set of random variables representing all the
features of the model.

» Define the parents of random variable X;, written as
parents(X;).

» X, is independent from other non-descendent variables given
the parents(X;).
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Representing the joint distribution

We can compute the full joint probability using the following
formula.

n
P(Xpy N NXy) = HP(XAParents(Xi))
i=1
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Representing the joint distribution

Example: What is the probability that all of the following occur?
» The alarm has sounded
» Neither a burglary nor an earthquake has occurred
» Both Watson and Gibbon call and say they hear the alarm

» There is no radio report of an earthquake
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Representing the joint distribution

Example: What is the probability that all of the following occur?
» The alarm has sounded
» Neither a burglary nor an earthquake has occurred
» Both Watson and Gibbon call and say they hear the alarm

» There is no radio report of an earthquake

— Formulate as a joint probability:
P(-BA-EANAAN-RAGAW)
= P(=B)P(—E)P(A|-B AN —E)P(-R|-E)P(G|A)P(W|A)
= (1 —0.0001)(1 — 0.0003)(0.01)(1 — 0.0002)(0.4)(0.8)
=32x1073
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Q #4: Calculating the joint probability
Q: What is the probability that all of the following occur?

» NEITHER a burglary NOR an earthquake has occurred,
» The alarm has NOT sounded,

» NEITHER of Watson and Gibbon is calling, and

>

There is NO radio report of an earthquake?

(A) 05699

(B) 0.6699 ®

(C) 0.7699

(D) 0.8699

(E) 0.9699 B o
P(A| BA-E) =0.95
P(A| BA E)=0.96
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Q #4: Calculating the joint probability
Q: What is the probability that all of the following occur?

» NEITHER a burglary NOR an earthquake has occurred,
» The alarm has NOT sounded,

» NEITHER of Watson and Gibbon is calling, and

>

There is NO radio report of an earthquake?

(A) 0569
(B) 0.6699 ®
(C) 0.7699
(D) 0.8699
(E) 0.9699 B o
P(A| BA-E) =095
P(A| BA E) =096
()

(1 —0.0001)(1 — 0.0003)(1 — 0.01)(1 — 0.4)(1 — 0.04)(1 — 0.0002) = 0.5699
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Independence in Three Key Structures
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Burglary, Alarm and Watson
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Q #5: Unconditional Independence

Q: Are Burglary and Watson independent?

(A) Yes
(B) No
(C) Can't tell.
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Q #5: Unconditional Independence

Q: Are Burglary and Watson independent?

(A) Yes
(B) No
(C) Can't tell.

— Correct answer is No.

If you learned the value of B, would your belief of W change? If B
is true, then Alarm is more likely to be true, and W is more likely
to be true.
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Q #6: Conditional Independence

Q: Are Burglary and Watson conditionally independent
given Alarm?

(A) Yes
(B) No
(C) Can't tell
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Q #6: Conditional Independence

Q: Are Burglary and Watson conditionally independent
given Alarm?

(A) Yes
(B) No
(C) Can't tell

— Correct answer is Yes.
Assume that W does not observe B directly. W only observes A.
B and W could only influence each other through A.

If A is known, then B and W do not affect each other.
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Alarm, Watson and Gibbon
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Q #7: Unconditional Independence

Q: Are Watson and Gibbon independent?

(A) Yes
(B) No
(C) Can't tell
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Q #7: Unconditional Independence

Q: Are Watson and Gibbon independent?
(A) Yes
(B) No

(C) Can't tell

— Correct answer is No. If Watson is more likely to call, then
Alarm is more likely to go off, which means that Gibbon is more
likely to call.
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Q #8 Conditional Independence

Q: Are Watson and Gibbon conditionally independent

given Alarm?

(A) Yes
(B) No
(C) Can't tell
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Q #8 Conditional Independence

Q: Are Watson and Gibbon conditionally independent

given Alarm?

(A) Yes
(B) No
(C) Can't tell

— Correct answer is Yes. Watson and Gibbon are both unreliable
sensors for Alarm. If Alarm is known, then Watson and Gibbon do
not affect each other.

CS 486/686: Intro to Al Lecturer: Wenhu Chen 49 / 53



Earthquake, Burglary, and Alarm

Earthquake
Burglary
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Q #9 Unconditional Independence

Q: Are Earthquake and Burglary independent?

Earthquake
Burglary

(A) Yes
(B) No
(C) Can't tell
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Q #9 Unconditional Independence

Q: Are Earthquake and Burglary independent?

Earthquake
Burglary

(A) Yes
(B) No
(C) Can't tell

— Correct answer is Yes.
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Q #10: Conditional Independence

Q: Are Earthquake and Burglary conditionally independent

given Alarm?
Earthquake
Burglary

(A) Yes
(B) No
(C) Can't tell

CS 486/686: Intro to Al Lecturer: Wenhu Chen 52 / 53



Q #10: Conditional Independence

Q: Are Earthquake and Burglary conditionally independent

given Alarm?
Earthquake
Burglary

(A) Yes
(B) No
(C) Can't tell

— Correct answer is No. Suppose that the Alarm is going. If there
is an Earthquake, then it is less likely that the Alarm is caused by
Burglary. If there is a Burglary, it is less likely that the Alarm is
caused by Earthquake.
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Revisiting Learning Goals

» Given a probabilistic model,
determine if two variables are unconditionally independent, or
conditionally independent given a third variable.

» Give examples of deriving a compact representation of a joint
distribution by using independence assumptions.

» Describe components of a Bayesian network.
» Compute a joint probability given a Bayesian network.

P Explain the independence relationships in the three key
structures.
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