Independence and Bayesian Networks (Part 1)

Wenhu Chen

Lecture 3

CS 486/686: Intro to AI Lecturer: Wenhu Chen 1 / 53

Outline

[Learning Goals](#page-2-0)

[Unconditional and Conditional Independence](#page-3-0)

[Examples of Bayesian Networks](#page-34-0)

[Why Bayesian Networks](#page-39-0)

[Representing the Joint Distribution](#page-45-0)

[Independence in Three Key Structures](#page-53-0)

[Revisiting Learning Goals](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 2 / 53

Learning Goals

 \blacktriangleright Given a probabilistic model,

determine if two variables are unconditionally independent, or conditionally independent given a third variable.

- ▶ Give examples of deriving a compact representation of a joint distribution by using independence assumptions.
- ▶ Describe components of a Bayesian network.
- ▶ Compute a joint probability given a Bayesian network.
- \blacktriangleright Explain the independence relationships in the three key structures.

[Unconditional and Conditional Independence](#page-3-0)

[Examples of Bayesian Networks](#page-34-0)

[Why Bayesian Networks](#page-39-0)

[Representing the Joint Distribution](#page-45-0)

[Independence in Three Key Structures](#page-53-0)

[Revisiting Learning Goals](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 4 / 53

Definition ((unconditional) independence) X and Y are (unconditionally) independent iff

> $P(X|Y) = P(X)$ $P(Y|X) = P(Y)$ $P(X \wedge Y) = P(X)P(Y)$

Learning Y does NOT influence your belief about X.

Definition ((unconditional) independence) X and Y are (unconditionally) independent iff

> $P(X|Y) = P(X)$ $P(Y|X) = P(Y)$ $P(X \wedge Y) = P(X)P(Y)$

Learning Y does NOT influence your belief about X.

 \rightarrow Convert between the two equations.

To specify joint probability, it is sufficient to specify the individual probabilities.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 5 / 53

Definition ((unconditional) independence) X and Y are (unconditionally) independent iff

> $P(X|Y) = P(X)$ $P(Y|X) = P(Y)$ $P(X \wedge Y) = P(X)P(Y)$

Learning Y does NOT influence your belief about X .

Definition ((unconditional) independence) X and Y are (unconditionally) independent iff

> $P(X|Y) = P(X)$ $P(Y|X) = P(Y)$ $P(X \wedge Y) = P(X)P(Y)$

Learning Y does NOT influence your belief about X .

 \rightarrow To justify that

 $P(X \wedge Y) = P(X)P(Y)$

we need to make four comparisons.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 6 / 53

Definition (conditional independence) X and Y are conditionally independent given Z if

> $P(X|Y \wedge Z) = P(X|Z).$ $P(Y | X \wedge Z) = P(Y | Z).$ $P(Y \wedge X|Z) = P(Y|Z)P(X|Z).$

Learning Y does NOT influence your belief about X if you already know Z.

Definition (conditional independence) X and Y are conditionally independent given Z if

> $P(X|Y \wedge Z) = P(X|Z).$ $P(Y | X \wedge Z) = P(Y | Z).$ $P(Y \wedge X|Z) = P(Y|Z)P(X|Z).$

Learning Y does NOT influence your belief about X if you already know Z .

 \rightarrow X is conditionally independent of Y given Z.

Independence does not imply conditional independence, and vice versa.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 7 / 53

Definition (conditional independence) X and Y are conditionally independent given Z if

> $P(X|Y \wedge Z) = P(X|Z).$ $P(Y | X \wedge Z) = P(Y | Z).$ $P(Y \wedge X|Z) = P(Y|Z)P(X|Z).$

Learning Y does NOT influence your belief about X if you already know Z.

Definition (conditional independence) X and Y are conditionally independent given Z if

> $P(X|Y \wedge Z) = P(X|Z).$ $P(Y | X \wedge Z) = P(Y | Z).$ $P(Y \wedge X|Z) = P(Y|Z)P(X|Z).$

Learning Y does NOT influence your belief about X if you already know Z .

 \rightarrow To justify that

```
P(X \wedge Y | Z) = P(X | Z) P(Y | Z)
```
we need to make eight comparisons.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 8 / 53

 $Q \#1$: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C . What is the minimum number of probabilities required to specify the joint distribution?

(A) 3

(B) 7

(C) 8

(D) 16

 $Q \#1$: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C . What is the minimum number of probabilities required to specify the joint distribution?

(A) 3 (B) 7 (C) 8 (D) 16

 \rightarrow (C) $P(A), P(B|A), P(C|A \wedge B)$. 1 + 2 + 4 = 7 probabilities Draw a graph to prove it to yourself.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 9 / 53

 $Q \#1$: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C . What is the minimum number of probabilities required to specify the joint distribution?

(A) 3 (B) 7 (C) 8 (D) 16 \rightarrow (C) $P(A, B, C), P(\neg A, B, C), \cdots, P(\neg A, \neg B, \neg C)$. A total of $8 - 1 = 7$ probabilities

 CS 486/686: Intro to AI Lecturer: Wenhu Chen 10 / 53

$Q \#2$: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C . Assume that A , B , and C are independent. What is the minimum number of probabilities required to specify the joint distribution?

(A) 3

(B) 7

(C) 8

(D) 16

$Q \#2$: Deriving a compact representation

Q: Consider a model with three random variables, A, B, C . Assume that A , B , and C are independent. What is the minimum number of probabilities required to specify the joint distribution?

(A) 3 (B) 7 (C) 8 (D) 16 \rightarrow (A) $P(A), P(B), P(C)$. 1 + 1 + 1 = 3 probabilities

Draw a graph to prove it to yourself.

 CS 486/686: Intro to AI Lecturer: Wenhu Chen 11 / 53

$Q \#3$: Deriving a compact representation

Q: Consider a model with three boolean random variables, A, B, C . Assume that A and B are conditionally independent given C . What is the minimum number of probabilities required to specify the joint distribution?

(A) 4

(B) 5

(C) 7

(D) 11

$Q \#3$: Deriving a compact representation

Q: Consider a model with three boolean random variables, A, B, C . Assume that A and B are conditionally independent given C . What is the minimum number of probabilities required to specify the joint distribution?

(A) 4

(B) 5

(C) 7

(D) 11

 \rightarrow (B) $P(C)$, $P(A|C)$, $P(B|C)$. 1 + 2 + 2 = 5 probabilities Draw a graph to prove it to yourself.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 12 / 53

$Q \# 3a$: Deriving a compact representation

Q: Given the joint probability distribution about A, B, and C, how many comparisons do we need to make to justify A and B are independent given C?

(A) 1 (B) 4 (C) 8 (D) 6

Q #3a: Deriving a compact representation

Q: Given the joint probability distribution about A, B, and C, how many comparisons do we need to make to justify A and B are independent given C?

(A) 1 (B) 4 (C) 8 (D) 6 \rightarrow (C) $p(B, A|C) = p(B|C) * p(A|C)$ and $p(B, \neg A|C) = p(B|C) * p(\neg B|C)$... A total of 8 equalities!

Is this true?

 CS 486/686: Intro to AI Lecturer: Wenhu Chen 13 / 53

$Q \# 3a$: Deriving a compact representation

Q: Given the joint probability distribution about A, B, and C, how many comparisons do we need to make to justify A and B are independent given C?

- (A) 1
- (B) 4
- (C) 8
- (D) 6

Q #3a: Deriving a compact representation

Q: Given the joint probability distribution about A, B, and C, how many comparisons do we need to make to justify A and B are independent given C?

(A) 1

(B) 4

(C) 8

(D) 6

 \rightarrow If we already know $p(B, A|C) = p(B|C) * p(A|C); p(\neg B, A|C) =$ $p(\neg B|C) * p(A|C); p(B, \neg A|C) = p(B|C) * p(\neg A|C)$. Do we still need to compare $p(\neg B, \neg A|C)$ and $p(\neg B|C) * p(\neg A|C)$?

Probably not, the answer is (D).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 14 / 53

Q #3b: Deriving a compact representation

Q: Read the table to understand whether B and C are independent given A.

(A) B and C are independent given A

(B) B and C are not independent given A

CS 486/686: Intro to AI Lecturer: Wenhu Chen 15 / 53

Q #3b: Deriving a compact representation

Read the table to understand whether B and C are independent given A.

 \blacktriangleright Compute $p(B, C|A)$

$$
\blacktriangleright
$$
 Compute $p(B|A)$ and $p(C|A)$

$$
\blacktriangleright \text{ Verify } p(B,C|A) = p(B|A) * p(C|A)
$$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 16 / 53

$Q \#$ 3b: Step-by-Step Derivation $p(B, C|A)$

Table: Merging $p(A, B, C)$.

►
$$
p(B, C|A) = p(B, C, A)/p(A)
$$

\n► $p(A) = (0.16 + 0.16 + 0.24 + 0.24, 0.012 + 0.008 + 0.108 + 0.072) = (0.8, 0.2)$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 17 / 53

$Q \#$ 3b: Step-by-Step Derivation $p(B, C|A)$

Table: Computing $p(B, C|A)$.

$$
p(B, C|A) = p(B, C, A)/p(A)
$$

\n
$$
p(A) = (0.8, 0.2)
$$

 \blacktriangleright $p(B, C|A)$ is displayed in the table

CS 486/686: Intro to AI Lecturer: Wenhu Chen 18 / 53

Q #3b: Step-by-Step Derivation

Table: Merge $p(A, B, C)$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 19 / 53

 $Q \#3b$: Step-by-Step Derivation $p(B|A)$

Table: Computing $p(A, B)$

- \blacktriangleright Marginalizing over variable C
- \blacktriangleright Joint $p(A, B)$ is displayed in the table

 $Q \#3b$: Step-by-Step Derivation $p(B|A)$

Table: Computing $p(B|A)$

- \blacktriangleright Marginalizing over variable C
- \blacktriangleright Conditional $p(B|A)$ is displayed in the table

$Q \#3b$: Step-by-Step Derivation $p(C|A)$

Table: Merging $p(A, B, C)$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 22 / 53

 $Q \#3b$: Step-by-Step Derivation $p(C|A)$

Table: Computing $p(A, C)$

 $Q \#$ 3b: Step-by-Step Derivation $p(C|A)$

Table: Computing $p(C|A)$

- \blacktriangleright Marginalizing over variable B
- \blacktriangleright Computing $p(C|A)$

Q #3b: Step-by-Step Derivation (Verification)

Β		Prob				C	A	Prob
Т		0.4				Т		0.5
F		0.6				F		0.5
Т	F	0.1				т	F	0.6
F	F	0.9				F	F	0.4
		В	C	(A)	Prob			
		Т	т		$0.5 * 0.4 == 0.2$			
		т	F		$0.5 * 0.4 == 0.2$			
		F	Т	т	$0.5 * 0.6 == 0.3$			
		F	F	т	$0.5 * 0.6 == 0.3$			
		Т	т	F	$0.6 * 0.1 == 0.06$			
		т	F	F	$0.4 * 0.1 == 0.04$			
		F	Τ	F	$0.6 * 0.9 == 0.54$			
		F	F	F			$0.4 * 0.9 == 0.36$	

All of the probabilities are equal, therefore B and C are independent given A.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 25 / 53

[Learning Goals](#page-2-0)

[Unconditional and Conditional Independence](#page-3-0)

[Examples of Bayesian Networks](#page-34-0)

[Why Bayesian Networks](#page-39-0)

[Representing the Joint Distribution](#page-45-0)

[Independence in Three Key Structures](#page-53-0)

[Revisiting Learning Goals](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 26 / 53

Inheritance of Handedness

Car Diagnostic Network

Example: Fire alarms

Report: "report of people leaving building because a fire alarm went off"

Example: Medical diagnosis of diabetes

[Learning Goals](#page-2-0)

[Unconditional and Conditional Independence](#page-3-0)

[Examples of Bayesian Networks](#page-34-0)

[Why Bayesian Networks](#page-39-0)

[Representing the Joint Distribution](#page-45-0)

[Independence in Three Key Structures](#page-53-0)

[Revisiting Learning Goals](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 31 / 53

Why Bayesian Networks?

A probabilistic model of the Holmes scenario:

- \blacktriangleright The random variables: Earthquake, Radio, Burglary, Alarm, Watson, and Gibbon.
- $\blacktriangleright \#$ of probabilities in the joint distribution: $2^6 = 64$.

 \blacktriangleright For example,

 $P(E \wedge R \wedge B \wedge A \wedge W \wedge G) =?$ $P(E \wedge R \wedge B \wedge A \wedge W \wedge \neg G) = ?$

... etc ...

We can compute any probability using the joint distribution, but

- \triangleright Quickly become intractable as the number of variables grows.
- \triangleright Unnatural and tedious to specify all the probabilities.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 32 / 53

Why Bayesian Networks?

A Bayesian Network

- \triangleright is a compact version of the joint distribution
- \blacktriangleright takes advantage of the unconditional and conditional independence among the variables.

Reminder: Modelling the Holmes Scenario

- \rightarrow The random variables:
	- \triangleright B: A Burglary is happening.
	- \blacktriangleright A: The alarm is going.
	- \triangleright W: Dr. Watson is calling.
	- ▶ G: Mrs. Gibbon is calling.
	- \blacktriangleright E: Earthquake is happening.
	- \triangleright R: A report of earthquake is on the radio news.

A Bayesian Network for the Holmes Scenario

How many probabilities do we need to encode the Network?

CS 486/686: Intro to AI Lecturer: Wenhu Chen 35 / 53

Bayesian Network

A Bayesian Network is a directed acyclic graph (DAG).

- \blacktriangleright Each node corresponds to a random variable.
- \blacktriangleright X is a parent of Y if there is an arrow from node X to node Y_{\cdot}

 \rightarrow Like a family tree, there are parents, children, ancestors, descendants.

 \blacktriangleright Each node X_i has a conditional probability distribution $P(X_i | Parents(X_i))$ that quantifies the effect of the parents on the node.

[Learning Goals](#page-2-0)

[Unconditional and Conditional Independence](#page-3-0)

[Examples of Bayesian Networks](#page-34-0)

[Why Bayesian Networks](#page-39-0)

[Representing the Joint Distribution](#page-45-0)

[Independence in Three Key Structures](#page-53-0)

[Revisiting Learning Goals](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 37 / 53

The Semantics of Bayesian Networks

Two ways to understand Bayesian Networks:

- \triangleright A representation of the joint probability distribution
- \triangleright An encoding of the conditional independence assumptions

The idea is that, given a random variable X, a small set of variables may exist that directly affect the variable's value in the sense that X is conditionally independent of other variables given values for the directly affecting variables.

- ▶ Start with a set of random variables representing all the features of the model.
- \blacktriangleright Define the **parents** of random variable X_i , written as $parents(X_i).$
- \blacktriangleright X_i is independent from other non-descendent variables given the *parents* (X_i) .

We can compute the full joint probability using the following formula.

$$
P(X_n \wedge \cdots \wedge X_1) = \prod_{i=1}^n P(X_i | Parents(X_i))
$$

Example: What is the probability that all of the following occur?

- \blacktriangleright The alarm has sounded
- ▶ Neither a burglary nor an earthquake has occurred
- ▶ Both Watson and Gibbon call and say they hear the alarm
- \blacktriangleright There is no radio report of an earthquake

Example: What is the probability that all of the following occur?

- \blacktriangleright The alarm has sounded
- ▶ Neither a burglary nor an earthquake has occurred
- ▶ Both Watson and Gibbon call and say they hear the alarm
- \blacktriangleright There is no radio report of an earthquake
- \rightarrow Formulate as a joint probability:

 $P(\neg B \land \neg E \land A \land \neg R \land G \land W)$ $= P(\neg B)P(\neg E)P(A|\neg B \wedge \neg E)P(\neg R|\neg E)P(G|A)P(W|A)$ $= (1 - 0.0001)(1 - 0.0003)(0.01)(1 - 0.0002)(0.4)(0.8)$ $= 3.2 \times 10^{-3}$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 41 / 53

$Q \#4$: Calculating the joint probability

Q: What is the probability that all of the following occur?

- NEITHER a burglary NOR an earthquake has occurred,
- The alarm has NOT sounded.
- NEITHER of Watson and Gibbon is calling, and
- \blacktriangleright There is NO radio report of an earthquake?

- (B) 0.6699
- (C) 0.7699
- (D) 0.8699

(E) 0.9699

$Q \#4$: Calculating the joint probability

Q: What is the probability that all of the following occur?

- NEITHER a burglary NOR an earthquake has occurred,
- The alarm has NOT sounded.
- NEITHER of Watson and Gibbon is calling, and
- ▶ There is NO radio report of an earthquake?

 \rightarrow (A) $(1 - 0.0001)(1 - 0.0003)(1 - 0.01)(1 - 0.4)(1 - 0.04)(1 - 0.0002) = 0.5699$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 42 / 53

[Learning Goals](#page-2-0)

[Unconditional and Conditional Independence](#page-3-0)

[Examples of Bayesian Networks](#page-34-0)

[Why Bayesian Networks](#page-39-0)

[Representing the Joint Distribution](#page-45-0)

[Independence in Three Key Structures](#page-53-0)

[Revisiting Learning Goals](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 43 / 53

Burglary, Alarm and Watson

$Q \#5$: Unconditional Independence

Q: Are Burglary and Watson independent?

(A) Yes

(B) No

(C) Can't tell.

$Q \#5$: Unconditional Independence

Q: Are Burglary and Watson independent?

(A) Yes

(B) No

(C) Can't tell.

 \rightarrow Correct answer is No.

If you learned the value of B, would your belief of W change? If B is true, then Alarm is more likely to be true, and W is more likely to be true.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 45 / 53

Q #6: Conditional Independence

Q: Are Burglary and Watson conditionally independent given Alarm?

- (A) Yes
- (B) No
- (C) Can't tell

$Q \#6$: Conditional Independence

Q: Are Burglary and Watson conditionally independent given Alarm?

- (A) Yes
- (B) No
- (C) Can't tell
- \rightarrow Correct answer is Yes.

Assume that W does not observe B directly. W only observes A.

- B and W could only influence each other through A.
- If A is known, then B and W do not affect each other.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 46 / 53

Alarm, Watson and Gibbon

CS 486/686: Intro to AI Lecturer: Wenhu Chen 47 / 53

$Q \#7$: Unconditional Independence

Q: Are Watson and Gibbon independent?

(A) Yes (B) No (C) Can't tell

Q #7: Unconditional Independence

Q: Are Watson and Gibbon independent?

- (A) Yes
- (B) No

(C) Can't tell

 \rightarrow Correct answer is No. If Watson is more likely to call, then Alarm is more likely to go off, which means that Gibbon is more likely to call.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 48 / 53

Q: Are Watson and Gibbon conditionally independent given Alarm?

(A) Yes (B) No (C) Can't tell

CS 486/686: Intro to AI Lecturer: Wenhu Chen 49 / 53

Q: Are Watson and Gibbon conditionally independent given Alarm?

(A) Yes

(B) No

(C) Can't tell

 \rightarrow Correct answer is Yes. Watson and Gibbon are both unreliable sensors for Alarm. If Alarm is known, then Watson and Gibbon do not affect each other.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 49 / 53

Earthquake, Burglary, and Alarm

Q #9 Unconditional Independence

Q: Are Earthquake and Burglary independent?

Q #9 Unconditional Independence

Q: Are Earthquake and Burglary independent?

(A) Yes

(B) No

(C) Can't tell

 \rightarrow Correct answer is Yes.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 51 / 53

Q #10: Conditional Independence

Q: Are Earthquake and Burglary conditionally independent given Alarm?

$Q \# 10$: Conditional Independence

Q: Are Earthquake and Burglary conditionally independent given Alarm?

(A) Yes

(B) No

(C) Can't tell

 \rightarrow Correct answer is No. Suppose that the Alarm is going. If there is an Earthquake, then it is less likely that the Alarm is caused by Burglary. If there is a Burglary, it is less likely that the Alarm is caused by Earthquake.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 52 / 53

Revisiting Learning Goals

 \blacktriangleright Given a probabilistic model,

determine if two variables are unconditionally independent, or conditionally independent given a third variable.

- ▶ Give examples of deriving a compact representation of a joint distribution by using independence assumptions.
- ▶ Describe components of a Bayesian network.
- ▶ Compute a joint probability given a Bayesian network.
- \blacktriangleright Explain the independence relationships in the three key structures.