Review of CS486/686

Wenhu Chen, Pascal Poupart

Lecture 24

CS 486/686: Intro to AI Lecturer: Wenhu Chen 1 / 43

Outline

[Search Algorithm](#page-2-0)

[Uncertainty Estimation](#page-15-0)

[Machine Learning](#page-21-0)

[Deep Learning](#page-32-0)

[Miscellaneous](#page-37-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 2 / 43

[Search Algorithm](#page-2-0)

[Uncertainty Estimation](#page-15-0)

[Machine Learning](#page-21-0)

[Deep Learning](#page-32-0)

[Miscellaneous](#page-37-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 3 / 43

Uninformed Search

- \blacktriangleright How to formulate a search problem?
- \blacktriangleright What is a search tree?
- \blacktriangleright What is generic Search algorithm?
- \triangleright What is DFS and what is BFS?
- \triangleright What is the space/time complexity of DFS and BFS?
- \triangleright What is the iterative deepening space complexity?

The Search Tree

Generic Search Algorithm

Algorithm 1 A Generic Search Algorithm

How to use heuristic search?

- \blacktriangleright What is LCFS (lowest-cost first)?
- \triangleright What is GBFS (lowest-heuristic first)?
- \blacktriangleright What is A* search (combination of two)?

A* Search Algorithm

- \blacktriangleright Space and Time Complexities.
- \blacktriangleright Completeness and Optimality.
- \blacktriangleright Admissible Heuristics \rightarrow Optimality
- \triangleright Consistent Heuristics \rightarrow Multi-Path Pruning
- \blacktriangleright Prove the admissibility and consistency criterion

A* is Optimal with admissibility constraint

- \triangleright Assuming you have many paths in the frontier: $(S \rightarrow G : C^*, \cdots, S \rightarrow N : C^n)$, and $C^* \leq C^n$.
- If there a path through *N* to *G* has a lower cost of $C' < C^*$.
- According to admissibility, $C^n \leq C' \leq C^*$.
- \blacktriangleright It's contradictory to our assumption.

Summary of Search Strategies

Constraint Satisfaction Problem

- \triangleright Why do we need to model the internal structure of the state?
- \blacktriangleright What is Backtracking Algorithm?
- \blacktriangleright What is Arc consistency Algorithm?
- \triangleright AC-3 Algorithm, using Arc consistency to eliminate Arc
- \triangleright AC-3 Algorithm complexity
- \triangleright Combine Backtracking with AC-3 algorithm

Backtracking Search

Algorithm 2 BACKTRACK(assignment, csp)

- 1: if assignment is complete then return assignment
- 2: Let var be an unassigned variable
- 3: for every value in the domain of var do
- 4: **if** adding $\{var = value\}$ satisfies every constraint **then**
5: add $\{var = value\}$ to assignment
- 5: add $\{var = value\}$ to assignment
6: result \leftarrow BACKTRACK(assignment
- 6: result \leftarrow BACKTRACK(assignment, csp)
7: **if** result \neq failure **then return** result
- if result \neq failure then return result
- 8: remove $\{var = value\}$ from assignment if it was added

9: return failure

The AC-3 Arc Consistency Algorithm

Algorithm 3 The AC-3 Algorithm

- 1: put every arc in the set *S*.
- 2: while *S* is not empty do
- 3: select and remove $\langle X, c(X, Y) \rangle$ from *S*
4. remove every value in *D* x that doesn't
- remove every value in D_X that doesn't have a value in D_Y that satisfies the constraint $c(X, Y)$
- 5: **if** D_X was reduced **then**
- 6: **if** D_X is empty **then return** false
- 7: for every $Z \neq Y$, add $\langle Z, c'(Z, X) \rangle$ to *S* return true

Local Search

- \triangleright Why do we need local search?
- How do we perform greedy descent?
- \blacktriangleright How can we avoid local minima?
- \blacktriangleright What is Simulated Annealing?
- \blacktriangleright What is Genetic Algorithm?

Simulated Annealing Algorithm

Algorithm 4 Simulated Annealing

- 1: $current \leftarrow initial-state$
- 2: $T \leftarrow$ a large positive value
- 3: while *T >* 0 do
- 4: next \leftarrow a random neighbour of current

5:
$$
\Delta C \leftarrow \text{cost}(\text{next}) - \text{cost}(\text{current})
$$

- 6: **if** $\Delta C < 0$ then
- 7: current \leftarrow next
8: **else**
- 8: else

9: current \leftarrow next with probability $p = e^{\frac{-\Delta C}{T}}$

- 10: decrease *T*
- 11: return current

[Search Algorithm](#page-2-0)

[Uncertainty Estimation](#page-15-0)

[Machine Learning](#page-21-0)

[Deep Learning](#page-32-0)

[Miscellaneous](#page-37-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 16 / 43

Independence

- \triangleright What is unconditional independence?
- \triangleright What is conditional independence?
- \triangleright What is chain rule/product rule/sum rule/bayes rule?
- \blacktriangleright Universal appraoch to calculate a probability.

Independence

- \triangleright Given joint probability distribution, derive the independence step by step.
- \blacktriangleright How are independence verified quantitatively.
- \triangleright Why do we need to use Bayesian Networks?
- \blacktriangleright How can we compute joint probability over a Bayesian Network?

D-Separation

- \blacktriangleright What is D-Separation Rule 1?
- \blacktriangleright What is D-Separation Rule 2?
- \blacktriangleright What is D-Separation Rule 3?
- \blacktriangleright How do you apply these D-Sesparation rules to understand independence between different nodes?

D-Separation

- \blacktriangleright Un-directed paths between X and Y.
- \blacktriangleright Multiple paths need to be considered if they exist.
- \triangleright One of the nodes on all the paths blocking the connection.

Constructing Bayesian Network

- \blacktriangleright Identify all the (conditional) independence relationships
- \blacktriangleright Pick an order
- \blacktriangleright Add nodes to the graph
- \triangleright Pick the minimum subset as parents according to the (conditional) independence relationships
- ▶ Form a Bayesian Network

[Search Algorithm](#page-2-0)

[Uncertainty Estimation](#page-15-0)

[Machine Learning](#page-21-0)

[Deep Learning](#page-32-0)

[Miscellaneous](#page-37-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 22 / 43

Supervised Learning

- \blacktriangleright Classification vs. Regression
- \blacktriangleright Cross-Validation
- \blacktriangleright How to avoid Over-fitting?
- \blacktriangleright How to derive Bias-Variance equation?
- \blacktriangleright Trade-offs between bias and variance.

Bias-Variance Trade-off

CS 486/686: Intro to AI Lecturer: Wenhu Chen 24 / 43

Bias-Variance proof (1)

Let's denote: - Y as the true output. - X as the input feature. - $f(X)$ as the true function (which we aim to approximate). - $\widehat{f}(X)$ as the predicted function from our model. - ϵ as the irreducible error or noise, with $\mathbb{E}[\epsilon]=0$ and $\text{Var}(\epsilon)=\sigma^2$.

The true error is given by the expected value of the squared difference between the predicted value and the true value:

$$
True Error = \mathbb{E}[(Y - \hat{f}(X))^2]
$$

First, express *Y* in terms of the true function and noise:

$$
Y = f(X) + \epsilon
$$

Substitute this into the expression for the true error:

True Error =
$$
\mathbb{E}[(f(X) + \epsilon - \hat{f}(X))^2]
$$

Expand the squared term:

True Error =
$$
\mathbb{E}[(f(X) - \hat{f}(X))^2 + 2(f(X) - \hat{f}(X))\epsilon + \epsilon^2]
$$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 25 / 43

Bias-Variance proof (2)

Since ϵ is noise with $\mathbb{E}[\epsilon]=0$:

$$
\mathbb{E}[2(f(X) - \hat{f}(X))\epsilon] = 2\mathbb{E}[(f(X) - \hat{f}(X))]\mathbb{E}[\epsilon] = 0
$$

So, the true error simplifies to:

True Error =
$$
\mathbb{E}[(f(X) - \hat{f}(X))^2] + \mathbb{E}[\epsilon^2]
$$

Since $\mathbb{E}[\epsilon^2] = \sigma^2$, we have:

$$
\text{True Error} = \mathbb{E}[(f(X) - \hat{f}(X))^2] + \sigma^2
$$

Now, decompose the term $\mathbb{E}[(f(X) - \hat{f}(X))^2]$:

$$
\mathbb{E}[(f(X) - \hat{f}(X))^2] = \mathbb{E}[(f(X) - \mathbb{E}[\hat{f}(X)] + \mathbb{E}[\hat{f}(X)] - \hat{f}(X))^2]
$$

Using the linearity of expectation:

$$
= \mathbb{E}[(f(X) - \mathbb{E}[\hat{f}(X)])^2 + (\mathbb{E}[\hat{f}(X)] - \hat{f}(X))^2 + 2(f(X) - \mathbb{E}[\hat{f}(X)])(\mathbb{E}[\hat{f}(X)] - \hat{f}(X))]
$$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 26 / 43

Bias-Variance proof (3)

Since
$$
\mathbb{E}[(f(X) - \mathbb{E}[\hat{f}(X)])(\mathbb{E}[\hat{f}(X)] - \hat{f}(X))] = 0
$$
:
= $\mathbb{E}[(f(X) - \mathbb{E}[\hat{f}(X)])^2] + \mathbb{E}[(\mathbb{E}[\hat{f}(X)] - \hat{f}(X))^2]$

The first term is the **bias squared**:

$$
\mathbb{E}[(f(X) - \mathbb{E}[\hat{f}(X)])^2] = (\text{Bias}[\hat{f}(X)])^2
$$

The second term is the **variance**:

$$
\mathbb{E}[(\mathbb{E}[\hat{f}(X)] - \hat{f}(X))^2] = \text{Var}[\hat{f}(X)]
$$

Thus, we have:

$$
\mathbb{E}[(f(X) - \hat{f}(X))^2] = (\text{Bias}[\hat{f}(X)])^2 + \text{Var}[\hat{f}(X)]
$$

Therefore, the true error can be written as:

True Error =
$$
(\text{Bias}[\hat{f}(X)])^2 + \text{Var}[\hat{f}(X)] + \sigma^2
$$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 27 / 43

Neural Networks I

- ▶ Approximating Different Gate function with Neural Network.
- \triangleright What is activation function and what qualifies as activation functions?

Neural Networks II

- \blacktriangleright What is gradient descent?
- \blacktriangleright What is loss function?
- \triangleright What's the rule of Backward propagation?
- \blacktriangleright How to perform backpropagation on 1 or 2 layers of neural network?
- \blacktriangleright Understand the computation/memory complexity of backpropagation

The recursive relationship

Backward Propagation Algorithm:

- Initialize W_i for all the layers (from 1 to n).
- \blacktriangleright Feedforward x into neural network and save intermediate values $q(x^{(1)}), q(x^{(2)}), \cdots$.

$$
\blacktriangleright \text{ Compute } \delta_n = \frac{\partial E}{\partial z} \cdot \frac{\partial g(x^{(n)})}{\partial x^{(n)}}.
$$

$$
\blacktriangleright \text{ For } i = n \to 2; \text{ do}
$$

$$
\blacktriangleright \delta_{i-1} = \delta_i \cdot W_i^T \cdot \frac{\partial g(x^{(i-1)})}{\partial x^{(i-1)}}
$$

$$
\blacktriangleright \text{ Compute } \frac{\partial E}{\partial W_i} = g(x^{i-1}) \otimes \delta_i
$$

$$
\triangleright \frac{\partial E}{\partial W_1} = x^0 \otimes \delta_1
$$
, where x^0 is the input.

 \blacktriangleright Obtain all $\frac{\partial E}{\partial W_i}$ for gradient descent.

CS 486/686: Intro to AI Lecturer: Wenhu Chen $30/43$

Neural Networks III

- \triangleright What is stochastic gradient descent?
- \blacktriangleright What is momentum method?
- \blacktriangleright What is adaptive method?
- ▶ Understand how to use Adam optimizer.

Adam: ADAptive Moments

Algorithm 5 ADAptive Moments **Require:** Learning Rate ϵ , Decay rates ρ_1 , ρ_2 , θ , δ 1: Initialize $s = 0$, $r = 0$, time step $t = 0$ 2: while stopping criteria not met do 3: Sample example $(x^{(i)},y^{(i)})$ from training set 4: Compute gradient estimate: $\hat{g} \leftarrow +\nabla_{\theta}L(f(x^{(i)}; \theta), y^{(i)})$ 5: $t \leftarrow t + 1$
6: Update: 6: Update: $s \leftarrow \rho_1 s + (1 - \rho_1)\hat{g}$
7: Update: $r \leftarrow \rho_2 r + (1 - \rho_2)\hat{g}$ 7: Update: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \hat{g} \odot \hat{g}$
8: Correct Biases: $\hat{s} \leftarrow \frac{s}{r}, \hat{r} \leftarrow -1$ 8: Correct Biases: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}, \hat{r} \leftarrow \frac{r}{1-\rho_2^t}$ 9: Compute Update: $\Delta\theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}}+\delta}$ 10: Apply Update: $\theta \leftarrow \theta + \Delta\theta$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 32 / 43

[Search Algorithm](#page-2-0)

[Uncertainty Estimation](#page-15-0)

[Machine Learning](#page-21-0)

[Deep Learning](#page-32-0)

[Miscellaneous](#page-37-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 33 / 43

Unsupervised Learning

- \blacktriangleright How to do K-means clustering?
- \blacktriangleright What is Principled component Analysis?
- \triangleright Understanding the two algorithms of PCA.
- \triangleright Draw the connection between the two algorithms of PCA.
- \blacktriangleright What is auto-encoder?
- \triangleright What is the optimization goal of GANs?

CNN & RNNs

- \blacktriangleright Understand RNN architecture.
- \blacktriangleright Perform backward propagation through time with two steps.
- Inderstand CNN architecture
- \blacktriangleright Perform backward propagation on 2x2 kernel on 3x3 image.

Transformers

- \blacktriangleright Understand the motivation of self-attention.
- ▶ Understand the difference between self-attention and cross-attention.
- \triangleright Understand the computation flow of a single-layer self-attention.
- \triangleright Understand the computation and memory complexity of single-layer self-attention.

Self-Attention Layer

[Search Algorithm](#page-2-0)

[Uncertainty Estimation](#page-15-0)

[Machine Learning](#page-21-0)

[Deep Learning](#page-32-0)

[Miscellaneous](#page-37-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 38 / 43

Neural Networks Computation Complexity (Forward)

- \triangleright Computation cost is mostly coming from matrix multiplication. Activations have negligible computation.
- In the forward propagation, there will be $Bxdx2d$ and $Bx2dxd$ matrix multiplications.
- \blacktriangleright Total cost is 4Bd².

Neural Networks Computation Complexity (Backward)

Assuming we have one layer of d by d' dimensions (weight matrix of *W*), where the input is h_t and the output is h_{t+1} .

- \blacktriangleright We need $\frac{\partial L}{\partial W} = \frac{\partial L}{\partial h_{t+1}} \cdot h_t$. This operation consists of a matrix multiplication of $\mathbb{R}^{B \times d' \times 1}$ and $\mathbb{R}^{B \times 1 \times d}$, which consumes $B d d'$ multiplication.
- \blacktriangleright We also need to use chain rule to compute $\frac{\partial L}{\partial h_t} = \frac{\partial L}{\partial h_{t+1}} \cdot W$. This operation consists of a matrix multiplication of $\mathbb{R}^{B \times d'}$ and $\mathbb{R}^{d'\times d}$, which consumes another Bdd' multiplication.
- \blacktriangleright The forward is pass is Bdd' , then the backward is roughly doubling it to $2Bdd'.$ Therefore, in order to know the backward computation, then we can just double that.
- In the previous network, the total will be $8Bd^2$.

Neural Networks Memory Complexity (Forward)

- \blacktriangleright Memory complexity is the peak memory we use.
- In the forward scenario, let's say that we don't do backprop and we don't want to cache anything.
- \triangleright We can implement everything in-place. The memory cost is basically the largest intermediate. It's 2Bd in this case.
- \blacktriangleright Model weights have to stay in the memory, therefore, the total is $4d^2 + 2Bd$.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 41 / 43

Neural Networks Memory Complexity (Backward)

- \triangleright We need to cache every hidden vectors and input and output in the neural network. This is for preparing backward propagation. Therefore, the total is $Bd + B2d + B2d + Bd$ $= 6Bd$.
- \triangleright We need to store all the weights in the memory, which is $4d^2$.
- \blacktriangleright If we are using Adam, there will first-order and second-order momentum, which are exactly the same size of weight 8*d*2.

$$
\blacktriangleright
$$
 The total is $12d^2 + 6Bd$.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 42 / 43

Exam

- \blacktriangleright Non-programmable calculator.
- ▶ Single-sided A4 Study Note.
- \blacktriangleright A total of 8 problems.
- \triangleright 5 problems from Wenhu.
- ▶ 3 problems from Pascal.
- \blacktriangleright 100 marks in total.
- If you can't attend the final exam, we will mark as INC to allow you to take the final in the following term.
- \blacktriangleright Pass the exam to pass the course.

Lecture 24: Other AI Courses CS486/686 Intro to Artificial Intelligence

Pascal Poupart David R. Cheriton School of Computer Science CIFAR AI Chair at Vector Institute

Other AI Courses

- § CS480/680: Intro to Machine Learning
	- § Support vector machines, logistic regression, Gaussian processes, linear regression, CNNs, RNNs, transformers, variational autoencoders, generative adversarial networks, graph neural networks, normalizing flows, diffusion models, bagging/boosting, transfer learning, fairness, etc.
- CS485/685: Learning theory
- CS484/684: Computer vision
- § CS479: Biologically plausible neural networks
- CS794: Optimization for Data Science
- § CS885: Reinforcement Learning (Winter 2025, instructor: Pascal Poupart)
- CS886: Advanced topics in AI
	- Graph neural networks, NLP, Vision, multiagent systems, robust ML, learning theory

