
Review of CS486/686

Wenhu Chen, Pascal Poupart

Lecture 24

CS 486/686: Intro to AI Lecturer: Wenhu Chen 1 / 43

Outline

Search Algorithm

Uncertainty Estimation

Machine Learning

Deep Learning

Miscellaneous

CS 486/686: Intro to AI Lecturer: Wenhu Chen 2 / 43

Search Algorithm

Uncertainty Estimation

Machine Learning

Deep Learning

Miscellaneous

CS 486/686: Intro to AI Lecturer: Wenhu Chen 3 / 43

Uninformed Search

I How to formulate a search problem?

I What is a search tree?

I What is generic Search algorithm?

I What is DFS and what is BFS?

I What is the space/time complexity of DFS and BFS?

I What is the iterative deepening space complexity?

CS 486/686: Intro to AI Lecturer: Wenhu Chen 4 / 43

The Search Tree

frontier

explored nodes

unexplored nodes

start
node

CS 486/686: Intro to AI Lecturer: Wenhu Chen 5 / 43

Generic Search Algorithm

Algorithm 1 A Generic Search Algorithm

1: procedure Search(Graph, Start node s, Goal test goal(n))
2: frontier := {hsi}
3: while frontier is not empty do
4: select and remove path hn0, . . . , nki from frontier
5: if goal(nk) then
6: return hn0, . . . , nki
7: for every neighbour n of nk do
8: add hn0, . . . , nk, ni to frontier

9: return no solution

CS 486/686: Intro to AI Lecturer: Wenhu Chen 6 / 43

How to use heuristic search?

I What is LCFS (lowest-cost first)?

I What is GBFS (lowest-heuristic first)?

I What is A* search (combination of two)?

CS 486/686: Intro to AI Lecturer: Wenhu Chen 7 / 43

A* Search Algorithm

I Space and Time Complexities.

I Completeness and Optimality.

I Admissible Heuristics ! Optimality

I Consistent Heuristics ! Multi-Path Pruning

I Prove the admissibility and consistency criterion

CS 486/686: Intro to AI Lecturer: Wenhu Chen 8 / 43

A* is Optimal with admissibility constraint

I Assuming you have many paths in the frontier:
(S ! G : C⇤, · · · , S ! N : Cn), and C⇤  Cn.

I If there a path through N to G has a lower cost of C 0 < C⇤.

I According to admissibility, Cn  C 0 < C⇤.

I It’s contradictory to our assumption.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 9 / 43

Summary of Search Strategies

Strategy Frontier Selection Halts? Space Time
Depth-first Last node added No Linear Exp
Breadth-first First node added Yes Exp Exp
Lowest-cost-first min cost(n) Yes Exp Exp
Greedy Best-first min h(n) No Exp Exp
A* min cost(n) + h(n) Yes Exp Exp

CS 486/686: Intro to AI Lecturer: Wenhu Chen 10 / 43

Constraint Satisfaction Problem

I Why do we need to model the internal structure of the state?

I What is Backtracking Algorithm?

I What is Arc consistency Algorithm?

I AC-3 Algorithm, using Arc consistency to eliminate Arc

I AC-3 Algorithm complexity

I Combine Backtracking with AC-3 algorithm

CS 486/686: Intro to AI Lecturer: Wenhu Chen 11 / 43

Backtracking Search

Algorithm 2 BACKTRACK(assignment, csp)
1: if assignment is complete then return assignment
2: Let var be an unassigned variable
3: for every value in the domain of var do
4: if adding {var = value} satisfies every constraint then
5: add {var = value} to assignment
6: result BACKTRACK(assignment, csp)
7: if result 6= failure then return result

8: remove {var = value} from assignment if it was added

9: return failure

CS 486/686: Intro to AI Lecturer: Wenhu Chen 12 / 43

The AC-3 Arc Consistency Algorithm

Algorithm 3 The AC-3 Algorithm
1: put every arc in the set S.
2: while S is not empty do
3: select and remove hX, c(X,Y)i from S
4: remove every value in DX that doesn’t have a value in DY

that satisfies the constraint c(X,Y)
5: if DX was reduced then
6: if DX is empty then return false
7: for every Z 6= Y , add hZ, c0(Z,X)i to S

return true

CS 486/686: Intro to AI Lecturer: Wenhu Chen 13 / 43

Local Search

I Why do we need local search?

I How do we perform greedy descent?

I How can we avoid local minima?

I What is Simulated Annealing?

I What is Genetic Algorithm?

CS 486/686: Intro to AI Lecturer: Wenhu Chen 14 / 43

Simulated Annealing Algorithm

Algorithm 4 Simulated Annealing
1: current initial-state
2: T a large positive value
3: while T > 0 do
4: next a random neighbour of current
5: �C cost(next) - cost(current)
6: if �C < 0 then
7: current next
8: else
9: current next with probability p = e

��C
T

10: decrease T
11: return current

CS 486/686: Intro to AI Lecturer: Wenhu Chen 15 / 43

Search Algorithm

Uncertainty Estimation

Machine Learning

Deep Learning

Miscellaneous

CS 486/686: Intro to AI Lecturer: Wenhu Chen 16 / 43

Independence

I What is unconditional independence?

I What is conditional independence?

I What is chain rule/product rule/sum rule/bayes rule?

I Universal appraoch to calculate a probability.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 17 / 43

Independence

I Given joint probability distribution, derive the independence
step by step.

I How are independence verified quantitatively.

I Why do we need to use Bayesian Networks?

I How can we compute joint probability over a Bayesian
Network?

CS 486/686: Intro to AI Lecturer: Wenhu Chen 18 / 43

D-Separation

I What is D-Separation Rule 1?

I What is D-Separation Rule 2?

I What is D-Separation Rule 3?

I How do you apply these D-Sesparation rules to understand
independence between di↵erent nodes?

CS 486/686: Intro to AI Lecturer: Wenhu Chen 19 / 43

D-Separation

I Un-directed paths between X and Y .

I Multiple paths need to be considered if they exist.

I One of the nodes on all the paths blocking the connection.

X B C Y

A

D E

CS 486/686: Intro to AI Lecturer: Wenhu Chen 20 / 43

Constructing Bayesian Network

I Identify all the (conditional) independence relationships

I Pick an order

I Add nodes to the graph

I Pick the minimum subset as parents according to the
(conditional) independence relationships

I Form a Bayesian Network

CS 486/686: Intro to AI Lecturer: Wenhu Chen 21 / 43

Search Algorithm

Uncertainty Estimation

Machine Learning

Deep Learning

Miscellaneous

CS 486/686: Intro to AI Lecturer: Wenhu Chen 22 / 43

Supervised Learning

I Classification vs. Regression

I Cross-Validation

I How to avoid Over-fitting?

I How to derive Bias-Variance equation?

I Trade-o↵s between bias and variance.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 23 / 43

Bias-Variance Trade-o↵

CS 486/686: Intro to AI Lecturer: Wenhu Chen 24 / 43

Bias-Variance proof (1)

Let’s denote: - Y as the true output. - X as the input feature. - f(X) as the true function (which we aim to

approximate). - f̂(X) as the predicted function from our model. - ✏ as the irreducible error or noise, with

E[✏] = 0 and Var(✏) = �2.

The true error is given by the expected value of the squared di↵erence between the predicted value and the true
value:

True Error = E[(Y � f̂(X))2]

First, express Y in terms of the true function and noise:

Y = f(X) + ✏

Substitute this into the expression for the true error:

True Error = E[(f(X) + ✏ � f̂(X))2]

Expand the squared term:

True Error = E[(f(X) � f̂(X))2 + 2(f(X) � f̂(X))✏ + ✏2]

CS 486/686: Intro to AI Lecturer: Wenhu Chen 25 / 43

Bias-Variance proof (2)

Since ✏ is noise with E[✏] = 0:

E[2(f(X) � f̂(X))✏] = 2E[(f(X) � f̂(X))]E[✏] = 0

So, the true error simplifies to:

True Error = E[(f(X) � f̂(X))2] + E[✏2]

Since E[✏2] = �2, we have:

True Error = E[(f(X) � f̂(X))2] + �2

Now, decompose the term E[(f(X) � f̂(X))2]:

E[(f(X) � f̂(X))2] = E[(f(X) � E[f̂(X)] + E[f̂(X)] � f̂(X))2]

Using the linearity of expectation:

= E[(f(X) � E[f̂(X)])2 + (E[f̂(X)] � f̂(X))2 + 2(f(X) � E[f̂(X)])(E[f̂(X)] � f̂(X))]

CS 486/686: Intro to AI Lecturer: Wenhu Chen 26 / 43

Bias-Variance proof (3)

Since E[(f(X) � E[f̂(X)])(E[f̂(X)] � f̂(X))] = 0:

= E[(f(X) � E[f̂(X)])2] + E[(E[f̂(X)] � f̂(X))2]

The first term is the **bias squared**:

E[(f(X) � E[f̂(X)])2] = (Bias[f̂(X)])2

The second term is the **variance**:

E[(E[f̂(X)] � f̂(X))2] = Var[f̂(X)]

Thus, we have:
E[(f(X) � f̂(X))2] = (Bias[f̂(X)])2 + Var[f̂(X)]

Therefore, the true error can be written as:

True Error = (Bias[f̂(X)])2 + Var[f̂(X)] + �2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 27 / 43

Neural Networks I

I Approximating Di↵erent Gate function with Neural Network.

I What is activation function and what qualifies as activation
functions?

CS 486/686: Intro to AI Lecturer: Wenhu Chen 28 / 43

Neural Networks II

I What is gradient descent?

I What is loss function?

I What’s the rule of Backward propagation?

I How to perform backpropagation on 1 or 2 layers of neural
network?

I Understand the computation/memory complexity of
backpropagation

CS 486/686: Intro to AI Lecturer: Wenhu Chen 29 / 43

The recursive relationship

Backward Propagation Algorithm:

I Initialize Wi for all the layers (from 1 to n).

I Feedforward x into neural network and save intermediate
values g(x(1)), g(x(2)), · · · .

I Compute �n = @E
@z · @g(x(n))

@x(n) .

I For i = n ! 2; do

I �i�1 = �i ·WT
i · @g(x(i�1))

@x(i�1)

I Compute @E
@Wi

= g(xi�1)⌦ �i

I @E
@W1

= x0 ⌦ �1, where x0 is the input.

I Obtain all @E
@Wi

for gradient descent.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 30 / 43

Neural Networks III

I What is stochastic gradient descent?

I What is momentum method?

I What is adaptive method?

I Understand how to use Adam optimizer.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 31 / 43

Adam: ADAptive Moments

Algorithm 5 ADAptive Moments
Require: Learning Rate ✏, Decay rates ⇢1, ⇢2, ✓, �
1: Initialize s = 0, r = 0, time step t = 0
2: while stopping criteria not met do
3: Sample example (x(i), y(i)) from training set
4: Compute gradient estimate: ĝ +r✓L(f(x(i); ✓), y(i))
5: t t+ 1
6: Update: s ⇢1s+ (1� ⇢1)ĝ
7: Update: r ⇢2r + (1� ⇢2)ĝ � ĝ
8: Correct Biases: ŝ s

1�⇢t1
, r̂ r

1�⇢t2

9: Compute Update: �✓ = �✏ ŝp
r̂+�

10: Apply Update: ✓ ✓ +�✓

CS 486/686: Intro to AI Lecturer: Wenhu Chen 32 / 43

Search Algorithm

Uncertainty Estimation

Machine Learning

Deep Learning

Miscellaneous

CS 486/686: Intro to AI Lecturer: Wenhu Chen 33 / 43

Unsupervised Learning

I How to do K-means clustering?

I What is Principled component Analysis?

I Understanding the two algorithms of PCA.

I Draw the connection between the two algorithms of PCA.

I What is auto-encoder?

I What is the optimization goal of GANs?

CS 486/686: Intro to AI Lecturer: Wenhu Chen 34 / 43

CNN & RNNs

I Understand RNN architecture.

I Perform backward propagation through time with two steps.

I Understand CNN architecture.

I Perform backward propagation on 2x2 kernel on 3x3 image.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 35 / 43

Transformers

I Understand the motivation of self-attention.

I Understand the di↵erence between self-attention and
cross-attention.

I Understand the computation flow of a single-layer
self-attention.

I Understand the computation and memory complexity of
single-layer self-attention.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 36 / 43

Self-Attention Layer

CS 486/686: Intro to AI Lecturer: Wenhu Chen 37 / 43

Search Algorithm

Uncertainty Estimation

Machine Learning

Deep Learning

Miscellaneous

CS 486/686: Intro to AI Lecturer: Wenhu Chen 38 / 43

Neural Networks Computation Complexity (Forward)

I Computation cost is mostly coming from matrix
multiplication. Activations have negligible computation.

I In the forward propagation, there will be Bxdx2d and Bx2dxd
matrix multiplications.

I Total cost is 4Bd2.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 39 / 43

Neural Networks Computation Complexity (Backward)

Assuming we have one layer of d by d0 dimensions (weight matrix
of W), where the input is ht and the output is ht+1.

I We need @L
@W = @L

@ht+1
· ht. This operation consists of a matrix

multiplication of RB⇥d0⇥1 and RB⇥1⇥d, which consumes Bdd0

multiplication.

I We also need to use chain rule to compute @L
@ht

= @L
@ht+1

·W .

This operation consists of a matrix multiplication of RB⇥d0

and Rd0⇥d, which consumes another Bdd0 multiplication.

I The forward is pass is Bdd0, then the backward is roughly
doubling it to 2Bdd0. Therefore, in order to know the
backward computation, then we can just double that.

I In the previous network, the total will be 8Bd2.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 40 / 43

Neural Networks Memory Complexity (Forward)

I Memory complexity is the peak memory we use.

I In the forward scenario, let’s say that we don’t do backprop
and we don’t want to cache anything.

I We can implement everything in-place. The memory cost is
basically the largest intermediate. It’s 2Bd in this case.

I Model weights have to stay in the memory, therefore, the
total is 4d2 + 2Bd.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 41 / 43

Neural Networks Memory Complexity (Backward)

I We need to cache every hidden vectors and input and output
in the neural network. This is for preparing backward
propagation. Therefore, the total is Bd + B2d + B2d + Bd
= 6Bd.

I We need to store all the weights in the memory, which is 4d2.

I If we are using Adam, there will first-order and second-order
momentum, which are exactly the same size of weight 8d2.

I The total is 12d2 + 6Bd.
CS 486/686: Intro to AI Lecturer: Wenhu Chen 42 / 43

Exam

I Non-programmable calculator.

I Single-sided A4 Study Note.

I A total of 8 problems.

I 5 problems from Wenhu.

I 3 problems from Pascal.

I 100 marks in total.

I If you can’t attend the final exam, we will mark as INC to
allow you to take the final in the following term.

I Pass the exam to pass the course.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 43 / 43

Lecture 24: Other AI Courses
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science
CIFAR AI Chair at Vector Institute

Other AI Courses
§ CS480/680: Intro to Machine Learning

§ Support vector machines, logistic regression, Gaussian processes, linear regression, CNNs, RNNs,
transformers, variational autoencoders, generative adversarial networks, graph neural networks,
normalizing flows, diffusion models, bagging/boosting, transfer learning, fairness, etc.

§ CS485/685: Learning theory
§ CS484/684: Computer vision
§ CS479: Biologically plausible neural networks
§ CS794: Optimization for Data Science
§ CS885: Reinforcement Learning (Winter 2025, instructor: Pascal Poupart)
§ CS886: Advanced topics in AI

§ Graph neural networks, NLP, Vision, multiagent systems, robust ML, learning theory

2CS486/686 Spring 2024 - Lecture 24 - Pascal Poupart

	Search Algorithm
	Uncertainty Estimation
	Machine Learning
	Deep Learning
	Miscellaneous

