
Unsupervised Learning

Wenhu Chen
Lecture 21

CS 486/686: Intro to AI Lecturer: Wenhu Chen 1 / 46

Outline

Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Wenhu Chen 2 / 46

Learning Goals

▶ Understanding what is unsupervised Learning

▶ Understanding K-Means clustering algorithm

▶ Knowing how to perform PCA

▶ Understanding the basic idea of Auto-Encoder and GAN

CS 486/686: Intro to AI Lecturer: Wenhu Chen 3 / 46

Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Wenhu Chen 4 / 46

Unsupervised Learning Tasks

2 major types of tasks:

▶ Representation learning : learning low-dimensional
representations of examples

▶ Generative modelling : learning probability distribution from
which new examples can be drawn as samples

CS 486/686: Intro to AI Lecturer: Wenhu Chen 5 / 46

Unsupervised Learning - Clustering

Clustering is a common unsupervised representation learning task

→ Goal is to group training examples into clusters.

→ Clusters can be thought of as classes/categories.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 6 / 46

Unsupervised Learning - Clustering

2 types of clustering tasks

▶ Hard clustering : each example is assigned to 1 cluster with
certainty
→ class(x) = c

▶ Soft clustering : each example has a probability distribution
over all clusters
→ class(x) ∼ P (C|x)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 7 / 46

Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Wenhu Chen 8 / 46

k-Means Clustering - Overview

▶ A hard clustering algorithm

▶ Learns to definitively assign examples to classes

▶ Input: number of clusters k, training examples X

▶ Goal is to learn a representation that assigns examples to the
appropriate class c ∈ {1, 2, . . . , k}

CS 486/686: Intro to AI Lecturer: Wenhu Chen 9 / 46

k-Means Clustering - Centroids

Suppose each example contains n features: x = ⟨x1, x2, . . . , xn⟩

Each feature xj is real-valued.

k-Means learns a centroid for each cluster and assigns examples to
the closest centroid

▶ By “closest” we mean the centroid that is the shortest
distance from x

▶ Need to define a distance function d(c, x)

→ E.g. Euclidean distance (L2): d(c, x) =
√∑n

j=1(cj − xj)2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 10 / 46

k-Means Clustering - Centroids

Example: k = 3, x = ⟨x1, x2⟩

x1

x2

x1

x2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 11 / 46

k-Means Clustering - Algorithm Overview

k-means alternates between 2 steps:

1. Centroid update: Set the centroid of each cluster as the
feature-wise mean of each example currently assigned to the
cluster.

2. Cluster assignment: Assign each training example x to the
cluster with the closest centroid.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 12 / 46

k-Means Clustering - Algorithm

Input: X ∈ Rm×n, k ∈ N, d(c, x)

1. Initialization:
Randomly initialize k centroids: C ∈ Rk×n

2. While not converged, do:

▶ Assign each example to the cluster whose centroid is closest.
Y [i]← argminc d(C[c], X[i])

▶ Calculate the centroid for each cluster c by calculating the
average feature value for each exmaple currently classified as
cluster c.
C[c]← 1

nc

∑nc

j=1 Xc[j]

CS 486/686: Intro to AI Lecturer: Wenhu Chen 13 / 46

Visualization of Clustering Algorithm

The clustering algorithm visualization:

CS 486/686: Intro to AI Lecturer: Wenhu Chen 14 / 46

k-Means Clustering - Example Iteration

Let’s perform 1 iteration of k-means with k = 2, using Euclidean
distance. Use the following dataset:

Example x1, x2 x3
1 0.2 0.5 0
2 -0.6 2.1 1.2
3 -0.5 1.9 1.3
4 0.1 0.5 -0.3

Assume the current values for the centroids are as follows:

c c1, c2 c3
1 0.3 0.8 -0.5
2 -0.1 -0.5 1.0

CS 486/686: Intro to AI Lecturer: Wenhu Chen 15 / 46

k-Means Clustering - Example Iteration

Let’s perform 1 iteration of k-means with k = 2, using Euclidean
distance. Use the following dataset:

Example x1, x2 x3
1 0.2 0.5 0
2 -0.6 2.1 1.2
3 -0.5 1.9 1.3
4 0.1 0.5 -0.3

c1 = [0.3, 0.8,−0.5], c2 = [−0.1,−0.5, 1.0]

Example 1 to c1: 0.12 + 0.32 + 0.52, to c2: 0.32 + 1.02 + 1.02: c1
Example 2 to c1: 0.92 + 1.32 + 1.72, to c2: 0.42 + 2.62 + 0.22: c1
Example 3 to c1: 0.82 + 1.12 + 1.82, to c2: 0.42 + 2.42 + 0.32: c1
Example 4 to c1: 0.22 + 0.32 + 0.22, to c2: 0.22 + 1.02 + 1.32: c1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 16 / 46

k-Means Clustering - Example Iteration

Let’s perform 1 iteration of k-means with k = 2, using Euclidean
distance. Use the following dataset:

Example x1, x2 x3
1 0.2 0.5 0
2 -0.6 2.1 1.2
3 -0.5 1.9 1.3
4 0.1 0.5 -0.3

Computing the new centroid:

c1 = [0.2, 1.25, 0.55] c2 = []

→ ou need to re-initialize the centroid.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 17 / 46

k-Means Clustering - Finding the Best Solution

▶ k-means is guaranteed to converge (with L2 distance)

▶ Solution not guaranteed to be optimal

▶ To increase chance of finding better solution, you could:

▶ Run multiple times with different random initial cluster
assignments

▶ Scale the features so that their domains are similar

CS 486/686: Intro to AI Lecturer: Wenhu Chen 18 / 46

k-Means Clustering - Choosing proper k

The choice of k greatly determines the outcome of the clustering.

▶ As long as there are ≤ k + 1 examples, running k-means with
k + 1 clusters will result in lower error than running with k
clusters

▶ But using too large k will defeat the point of representation
learning...

CS 486/686: Intro to AI Lecturer: Wenhu Chen 19 / 46

k-Means Clustering - The Elbow Method

1. Execute k-means with multiple values of k ∈ {1, 2, . . . , kmax}.

2. Plot average distance across all examples and assigned
clusters.

3. Select k where there is drastic reduction in error improvement
on the plot (i.e. “elbow point”)

k

Av
er

ag
e

ex
am

pl
e-

to
-c

lu
st

er
 d

is
ta

nc
e

1 2 3 4 5 6 7 8

→ Can be ambiguous, since it is manual
CS 486/686: Intro to AI Lecturer: Wenhu Chen 20 / 46

k-Means Clustering - Silhouette Analysis

1. Execute k-means with multiple values of k ∈ {1, 2, . . . , kmax}.

2. Calculate average silhouette score s(x) for each k across the
dataset

3. Select k that maximizes average s(x)

s(x) =

{
b(x)−a(x)

max(a(x),b(x)) if |Cx| > 1

0 if |Cx| = 1

▶ a(x) is the average distance from example x to all other
examples in its own cluster

▶ b(x) is the smallest of the average distance of x to examples
in any other cluster

→ Significantly more objective than the Elbow Method
CS 486/686: Intro to AI Lecturer: Wenhu Chen 21 / 46

Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Wenhu Chen 22 / 46

Dimension Reduction

Dimensionality reduction simply refers to the process of reducing
the number of attributes in a dataset while keeping as much of the
variation in the original dataset as possible.

▶ High Dimension Data actually resides in an inherent
low-dimensional space.

▶ Additional dimensions are just random noise.

▶ Goal is to recover these inherent dimension and discard noise
dimension.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 23 / 46

Dimension Reduction

The observed data point dimensionality is not necessarily the
intrinsic dimension of the data.

By finding the intrinsic dimension, the problem becomes simpler.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 24 / 46

Principal Component Analysis

▶ Widely used method for unsupervised dimensionality reduction

▶ account for variance of data in as few dimensions as possible

▶ First PC is the project of direction that maximizes the
variance of projected data

▶ Second PC is the project of direction that is orthogonal to the
first PC that maximizes the variance of projected data

CS 486/686: Intro to AI Lecturer: Wenhu Chen 25 / 46

PCA Terminology

Consider a set of random variables of dimension p. We observe n
data points of xi ∈ Rp, where each of the n rows represents a
different repetition of the experiment, and each of the p columns
gives a particular kind of feature.

Therefore, we can write the entire dataset as X ∈ Rn×p

PCA aims to project the dataset to a lower dimension p′ < p,
which can be written as:

T = XW (1)

where W ∈ Rp×p′ projection matrix.

You can construct the original input by:

X ′ = TW T = XWW T (2)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 26 / 46

Principal Component Analysis (Algorithm I)

▶ Given the centered data, compute the principle vectors:

w1 = argmax|w|=1
1

m

m∑
i=1

{wTxi}2 (3)

▶ We maximize the variance of the projection of x

wk = argmax|w|=1
1

m

m∑
i=1

{wT [xi −
k−1∑
j=1

wjw
T
j xi]}2 (4)

▶ We maximize the variance of the projection in the residual
subspace

CS 486/686: Intro to AI Lecturer: Wenhu Chen 27 / 46

Principal Component Analysis (Algorithm I)

▶ Given the centered data, compute the principle vectors:

w1 = argmax|w|=1
1

m

m∑
i=1

{wTxi}2 (3)

▶ We maximize the variance of the projection of x

wk = argmax|w|=1
1

m

m∑
i=1

{wT [xi −
k−1∑
j=1

wjw
T
j xi]}2 (4)

▶ We maximize the variance of the projection in the residual
subspace

CS 486/686: Intro to AI Lecturer: Wenhu Chen 27 / 46

Principal Component Analysis (Algorithm I)

▶ Given the centered data, compute the principle vectors:

w1 = argmax|w|=1
1

m

m∑
i=1

{wTxi}2 (3)

▶ We maximize the variance of the projection of x

wk = argmax|w|=1
1

m

m∑
i=1

{wT [xi −
k−1∑
j=1

wjw
T
j xi]}2 (4)

▶ We maximize the variance of the projection in the residual
subspace

CS 486/686: Intro to AI Lecturer: Wenhu Chen 27 / 46

Principal Component Analysis (Algorithm II)

▶ Mean center the data.

▶ Compute Covariance Matrix Σ = XTX.

▶ Calculate the eigen values and eigen vectors of Σ.

▶ Eigenvector with largest eigen value λ1 is the first PC.

▶ Eigenvector with kth largest eigenvaluve λk is the k-th PC.

▶ λk/
∑

k λk is the proportion of variance captured by k-th PC.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 28 / 46

Principal Component Analysis (Algorithm II)

The goal of PCA can be written as follows:

Max uTXTXu (5)

s.t uTu = 1 (6)

Construct the Lagrangian multiplier to maximize uTXTXu−λuTu

The partial derivatives ∂uTXTXu−λuTu
∂u is set to zero:

2XTXu− 2λu = 2(XTX − λI)u = 0 (7)

Therefore, u must be an eigenvalue of XTX with eigenvalue of λ.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 29 / 46

Principal Component Analysis (Algorithm II)

▶ For symmetric matrices, eigenvectors for distinct eigenvalues
are orthogonal.

XTXu = λu, and λ1 ̸= λ2 → u1 · u2 = 0 (8)

▶ All eigenvalues of a real symmetric matrix are real.

|XTX − λI| = 0 and λ ∈ R (9)

▶ All eigenvalues of a positive semidefinite matrix are
non-negative

wTXTXw ≥ 0, then λ > 0 (10)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 30 / 46

Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Wenhu Chen 31 / 46

Autoencoders - Overview

▶ A representation learning algorithm

▶ Learn to map examples to low-dimensional representation

CS 486/686: Intro to AI Lecturer: Wenhu Chen 32 / 46

Autoencoders - Components

2 main components

1. Encoder e(x): maps x to low-dimensional representation ẑ

2. Decoder d(ẑ): maps ẑ to its original representation x

Autoencoder implements x̂ = d(e(x))

▶ x̂ is the reconstruction of original input x

▶ Encoder and decoder learned such that ẑ contains as much
information about x as needed to reconstruct it

Minimize sum of squares of differences between input and
prediction:

E =
∑
i

(xi − d(e(xi)))
2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 33 / 46

Linear Autoencoders

▶ Simplest form of autoencoder

▶ e and d are linear functions with shared weight matrix W

ẑ = Wx

x̂ = W⊤ẑ

CS 486/686: Intro to AI Lecturer: Wenhu Chen 34 / 46

Deep Neural Network Autoencoders

▶ Good for complex inputs

▶ e and d are feedforward neural networks, joined in series

▶ Train with backpropagation

ẑ x̂x

encoder decoder

CS 486/686: Intro to AI Lecturer: Wenhu Chen 35 / 46

Deep Neural Network Autoencoders

▶ The bottleneck is the key of the effectiveness of
Autoencoders. We map our input vector to bottleneck: the
bottleneck keeps the ‘latent informations’ of input x.

▶ In other words, it behaves like a approximative compression
algorithm. The encoding parameters are learned in training
process. Then we map bottleneck information h into same
dimension as input x.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 36 / 46

Issues of Autoencoders

▶ When we said that main idea behind autoencoders is to copy
input to its output, the key idea is that not to copy without
extracting useful informations about the distribution of the
data. Autoencoders are allowed too much capacity, easy to be
trained to the copying the task with learning anything useful
about the dataset

▶ As we said, autoencoders are allowerd too much capacity.
Regularized autoencoders can give us the task that find the
latent features of input, instead of copying the input.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 37 / 46

Denoising Autoencoders

To perform the denoising, the input x is corrupted into x̃ through
stochastic mapping of x̃ ∼ pN (x̃|x). Then the noisy (corrupted)
input is used for encoding and decoding parts.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 38 / 46

Sparse Autoencoders

The minimization objective involves an additional term

E =
∑
i

(xi − d(e(xi)))
2 +Φ(e(xi)) (11)

We can apply sparsity constraints on the encoded vector. For
example, we can use zero-mean Laplacean prior, where:

Lap(e(xi)|µ = 0, λ) =
λ

2
exp(−λ|hi|) (12)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 39 / 46

Learning Goals

Introduction of Unsupervised Learning

k-Means Clustering

Dimension Reduction Methods

Autoencoders

Generative Adversarial Networks

Revisiting Learning Goals

CS 486/686: Intro to AI Lecturer: Wenhu Chen 40 / 46

Generative Adversarial Networks - Overview

a.k.a. GANs

▶ A generative unsupervised learning algorithm

▶ Goal is to generate unseen examples that look like training
examples

CS 486/686: Intro to AI Lecturer: Wenhu Chen 41 / 46

GANs - Components

GANs are actually a pair of neural networks:

▶ Generator g(z): Given vector z in latent space, produces
example x drawn from a distribution that approximates the
true distribution of training examples
→ z usually sampled from a Gaussian distribution

▶ Discriminator d(x): A classifier that predicts whether x is real
(from training set) or fake (made by g)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 42 / 46

GANs - Illustrative Example

Generatorz ∈ ℝm

x̂

Discriminator

Discriminator

x

0
(fake)

(real)
1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 43 / 46

GANs - Training

GANs are trained with a minimax error:

E = Ex[log(d(x))] + Ez[log(1− d(g(z)))]

▶ Discriminator tries to maximize E

▶ Generator tries to minimize E

After convergence:

▶ g should be producing realistic images

▶ d should output 1
2 , indicating maximal uncertainty

CS 486/686: Intro to AI Lecturer: Wenhu Chen 44 / 46

GANs - Training

GANs are trained with a minimax error:

E = Ex[log(d(x))] + Ez[log(1− d(g(z)))]

▶ Discriminator tries to maximize E

▶ Generator tries to minimize E

After convergence:

▶ g should be producing realistic images

▶ d should output 1
2 , indicating maximal uncertainty

CS 486/686: Intro to AI Lecturer: Wenhu Chen 44 / 46

GANs - Algorithm

CS 486/686: Intro to AI Lecturer: Wenhu Chen 45 / 46

Revisiting Learning Goals

▶ Understanding what is unsupervised Learning

▶ Understanding K-Means clustering algorithm

▶ Knowing how to perform PCA

▶ Understanding the basic idea of Auto-Encoder and GAN

CS 486/686: Intro to AI Lecturer: Wenhu Chen 46 / 46

	Learning Goals
	Introduction of Unsupervised Learning
	k-Means Clustering
	Dimension Reduction Methods
	Autoencoders
	Generative Adversarial Networks
	Revisiting Learning Goals

