
Heuristic Search

Wenhu Chen

Lecture 18

CS 486/686: Intro to AI Lecturer: Wenhu Chen 1 / 84



Outline

Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Lowest-Cost-First Search

Greedy Best-First Search

A* Search

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to AI Lecturer: Wenhu Chen 2 / 84



Learning goals

▶ Describe motivations for applying heuristic search algorithms.

▶ Trace the execution of and implement the Lowest-cost-first
search, Greedy best-first search and A* search algorithm.

▶ Describe properties of the Lowest-cost-first, Greedy best-first
and A* search algorithms.

▶ Design an admissible heuristic function for a search problem.
Describe strategies for choosing among multiple heuristic
functions.

▶ Describes strategies for pruning a search space.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 3 / 84



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to AI Lecturer: Wenhu Chen 4 / 84



Why Heuristic Search?

How would choose which one of the two states to expand?

▶ an uninformed search algorithm

▶ humans

5 3

8 7 6

2 4 1

1 2 3

4 5

7 8 6

CS 486/686: Intro to AI Lecturer: Wenhu Chen 5 / 84



Why Heuristic Search

An uninformed search algorithm

▶ considers every state to be the same.

▶ does not know which state is closer to the goal.

▶ may not find the optimal solution.

An heuristic search algorithm

▶ uses heuristics to estimate how close the state is to a goal.

▶ try to find the optimal solution.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 6 / 84



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Lowest-Cost-First Search

Greedy Best-First Search

A* Search

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to AI Lecturer: Wenhu Chen 7 / 84



The Cost Function

Suppose that we are executing a search algorithm
and we have added a path ending at n to the frontier.

cost(n) is the actual cost of the path ending at n.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 8 / 84



The Heuristic Function

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the cheapest
path from node n to a goal node.

In general, h(n) can be arbitrary.

However, a good heuristic function has the following properties.

▶ problem-specific.

▶ non-negative.

▶ h(n) = 0 if n is a goal node.

▶ h(n) must be easy to compute (without search).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 9 / 84



LCFS, GBFS, and A*

▶ LCFS: remove the path with the lowest cost cost(n).

▶ GBFS: remove the path with the lowest heuristic value h(n).

▶ A*: remove the path with the lowest cost + heuristic value
cost(n) + h(n).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 10 / 84



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Lowest-Cost-First Search

Greedy Best-First Search

A* Search

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to AI Lecturer: Wenhu Chen 11 / 84



Lowest-cost-first search

▶ Frontier is a priority queue ordered by cost(n).

▶ Expand the path with the lowest cost(n).

→ a.k.a. Dijkstra’s shortest path algorithm.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 12 / 84



Trace LCFS on a search graph

If there is a tie, remove nodes from the frontier in alphabetical
order.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 13 / 84



Trace LCFS on a search graph

Frontier: (S)

S

CS 486/686: Intro to AI Lecturer: Wenhu Chen 14 / 84



Trace LCFS on a search graph

Frontier: (S: 0) → (SB: 1, SC: 1)

S B

C

1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 15 / 84



Trace LCFS on a search graph

Frontier: (SB: 1, SC: 1) → (SC: 1, SBE: 2, SBD: 10)

S B

C

E

D
1

1

1

9

CS 486/686: Intro to AI Lecturer: Wenhu Chen 16 / 84



Trace LCFS on a search graph

Frontier: (SC: 1, SBE: 2, SBD: 10) → (SBE: 2, SCH: 2, SBD: 10)

S B

C

E

D

H

1

1

1

9

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 17 / 84



Trace LCFS on a search graph

Frontier: (SBE: 2, SCH: 2, SBD: 10) → (SCH: 2, SBEF: 3, SBD:
10)

S B

C

E

D

H

F

1

1

1

9

1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 18 / 84



Trace LCFS on a search graph

Frontier: (SCH: 2, SBEF: 3, SBD: 10) → (SBEF: 3, SBD: 10)

S B

C

E

D

H

F

1

1

1

9

1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 19 / 84



Trace LCFS on a search graph

Frontier: (SBEF: 3, SBD: 10) → (SBD: 10)

S B

C

E

D

H

F

1

1

1

9

1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 20 / 84



Trace LCFS on a search graph

Frontier: (SBD: 10) → (SBDF: 11, SBDG: 11)

S B

C

E

D

H

F

G
1

1

1

9

1

1

1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 21 / 84



Trace LCFS on a search graph

Frontier: (SBDF: 11, SBDG: 11) → (SBDG: 11)

S B

C

E

D

H

F

G
1

1

1

9

1

1

1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 22 / 84



Trace LCFS on a search graph

Frontier: (SBDG: 11) → ()

S B

C

E

D

H

F

G
1

1

1

9

1

1

1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 23 / 84



Properties of LCFS

▶ Space and Time Complexities

Both complexities are exponential.
LCFS examines a lot of paths to ensure that
it returns the optimal solution first.

▶ Completeness and Optimality

Yes and yes under mild conditions:
(1) The branching factor is finite.
(2) The cost of every edge is bounded below by a positive
constant.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 24 / 84



Properties of LCFS

▶ Space and Time Complexities

Both complexities are exponential.
LCFS examines a lot of paths to ensure that
it returns the optimal solution first.

▶ Completeness and Optimality

Yes and yes under mild conditions:
(1) The branching factor is finite.
(2) The cost of every edge is bounded below by a positive
constant.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 24 / 84



Properties of LCFS

▶ Space and Time Complexities

Both complexities are exponential.
LCFS examines a lot of paths to ensure that
it returns the optimal solution first.

▶ Completeness and Optimality

Yes and yes under mild conditions:
(1) The branching factor is finite.
(2) The cost of every edge is bounded below by a positive
constant.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 24 / 84



Properties of LCFS

▶ Space and Time Complexities

Both complexities are exponential.
LCFS examines a lot of paths to ensure that
it returns the optimal solution first.

▶ Completeness and Optimality

Yes and yes under mild conditions:
(1) The branching factor is finite.
(2) The cost of every edge is bounded below by a positive
constant.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 24 / 84



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Lowest-Cost-First Search

Greedy Best-First Search

A* Search

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to AI Lecturer: Wenhu Chen 25 / 84



Greedy Best-First Search

▶ Frontier is a priority queue ordered by h(n).

▶ Expand the node with the lowest h(n).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 26 / 84



Trace GBFS on a search graph

If there is a tie, remove nodes from the frontier in alphabetical
order.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 27 / 84



Trace GBFS on a search graph

Frontier: (S) → (SC: 3, SB: 7)

S B

C

h(C) = 3

h(B) = 7
1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 28 / 84



Trace GBFS on a search graph

Frontier: (SC: 3, SB: 7) → (SB: 7, SCH: 100)

S B

C H

h(C) = 3

h(B) = 7

h(H) = 100

1

1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 29 / 84



Trace GBFS on a search graph

Frontier: (SB: 7, SCH: 100) → (SBD: 1, SBE: 4, SCH: 100)

S B

C H

E

D

h(C) = 3

h(B) = 7

h(H) = 100

h(E) = 4

h(D) = 1
1

1

1

1

9

CS 486/686: Intro to AI Lecturer: Wenhu Chen 30 / 84



Trace GBFS on a search graph
Frontier: (SBD: 1, SBE: 4, SCH: 100) → (SBDG: 0, SBE: 4, SCH:
100)

S B

C H

E

D G

h(C) = 3

h(B) = 7

h(H) = 100

h(E) = 4

h(D) = 1 h(G) = 0
1

1

1

1

9 1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 31 / 84



Trace GBFS on a search graph

Frontier: (SBDG: 0, SBE: 4, SCH: 100) → (SBE: 4, SCH: 100)

S B

C H

E

D G

h(C) = 3

h(B) = 7

h(H) = 100

h(E) = 4

h(D) = 1 h(G) = 0
1

1

1

1

9 1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 32 / 84



Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

No, GBFS is not complete. It could be stuck in a cycle.
No, GBFS is not optimal. GBFS may return a sub-optimal
path first.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 33 / 84



Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

No, GBFS is not complete. It could be stuck in a cycle.
No, GBFS is not optimal. GBFS may return a sub-optimal
path first.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 33 / 84



Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

No, GBFS is not complete. It could be stuck in a cycle.
No, GBFS is not optimal. GBFS may return a sub-optimal
path first.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 33 / 84



Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

No, GBFS is not complete. It could be stuck in a cycle.
No, GBFS is not optimal. GBFS may return a sub-optimal
path first.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 33 / 84



Greedy BFS: will it find a solution/terminate?

→ The cost of an arc is its length.

The heuristic function is the Euclidean straight line distance.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 34 / 84



Greedy BFS: will it find the optimal solution?

→ Path found by Greedy BFS: S → A → G, cost = 21.

The optimal solution: S → B → C → G, cost = 11.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 35 / 84



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Lowest-Cost-First Search

Greedy Best-First Search

A* Search

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to AI Lecturer: Wenhu Chen 36 / 84



A* Search

▶ Frontier is a priority queue ordered by f(n) = cost(n) + h(n).

▶ Expand the node with the lowest f(n).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 37 / 84



Trace A* search on a search graph

If there is a tie, remove nodes from the frontier in alphabetical
order.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 38 / 84



Trace A* on a search graph

Frontier: (S: 8)

S

h(S) = 8

CS 486/686: Intro to AI Lecturer: Wenhu Chen 39 / 84



Trace A* on a search graph

Frontier: (S: 8) → (SC: 4, SB: 8)

S B

C

h(C) = 3

h(B) = 7
1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 40 / 84



Trace A* on a search graph

Frontier: (SC: 4, SB: 8) → (SB: 8, SCH: 102)

S B

C H

h(C) = 3

h(B) = 7

h(H) = 100

1

1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 41 / 84



Trace A* on a search graph

Frontier: (SB: 8, SCH: 102) → (SBE: 6, SBD:11, SCH: 102)

S B

C H

E

D

h(C) = 3

h(B) = 7

h(H) = 100

h(E) = 4

h(D) = 1
1

1

1

1

9

CS 486/686: Intro to AI Lecturer: Wenhu Chen 42 / 84



Trace A* on a search graph
Frontier: (SBE: 6, SBD:11, SCH: 102) → (SBD:11, SBEF: 17,
SCH: 102)

S B

C H

E

D

F

h(C) = 3

h(B) = 7

h(H) = 100

h(E) = 4

h(D) = 1

h(F ) = 6

1

1

1

1

9

9

CS 486/686: Intro to AI Lecturer: Wenhu Chen 43 / 84



Trace A* on a search graph
Frontier: (SBD:11, SBEF: 17, SCH: 102) → (SBDG: 11, SBDF:
17, SBEF: 17, SCH: 102)

S B

C H

E

D

F

G

h(C) = 3

h(B) = 7

h(H) = 100

h(E) = 4

h(D) = 1

h(F ) = 6

h(G) = 0
1

1

1

1

9

9

1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 44 / 84



Trace A* on a search graph
Frontier: (SBDG: 11, SBDF: 17, SBEF: 17, SCH: 102) → (SBDF:
17, SBEF: 17, SCH: 102)

S B

C H

E

D

F

G

h(C) = 3

h(B) = 7

h(H) = 100

h(E) = 4

h(D) = 1

h(F ) = 6

h(G) = 0
1

1

1

1

9

9

1

1

CS 486/686: Intro to AI Lecturer: Wenhu Chen 45 / 84



Properties of A* Search

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

Yes and Yes, given mild conditions on the heuristic function.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 46 / 84



Properties of A* Search

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

Yes and Yes, given mild conditions on the heuristic function.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 46 / 84



Properties of A* Search

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

Yes and Yes, given mild conditions on the heuristic function.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 46 / 84



Properties of A* Search

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

Yes and Yes, given mild conditions on the heuristic function.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 46 / 84



A* is Optimal

Definition (admissible heuristic)

A heuristic h(n) is admissible if it never over-estimates
the cost of the cheapest path from node n to a goal node.

Theorem (Optimality of A*)

If the heuristic h(n) is admissible,
the solution found by A* is optimal.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 47 / 84



A* is Optimal

▶ Assuming you have many paths in the frontier:
(S → G : C∗, · · · , S → N : Cn), and C∗ ≤ Cn.

▶ If there a path through N to G has a lower cost of C ′ < C∗.

▶ According to admissibility, Cn ≤ C ′ < C∗.

▶ It’s contradictory to our assumption.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 48 / 84



A* is Optimally Efficient

Among all optimal algorithms that start from the same start node
and use the same heuristic, A* expands the fewest nodes.

→ No algorithm with the same information can do better.

A* expands the minimum number of nodes to find the optimal
solution.

Intuition for a proof: any algorithm that does not expand all nodes
with f(n) < C∗ run the risk of missing the optimal solution.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 49 / 84



A* is Optimally Efficient

Among all optimal algorithms that start from the same start node
and use the same heuristic, A* expands the fewest nodes.

→ No algorithm with the same information can do better.

A* expands the minimum number of nodes to find the optimal
solution.

Intuition for a proof: any algorithm that does not expand all nodes
with f(n) < C∗ run the risk of missing the optimal solution.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 49 / 84



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to AI Lecturer: Wenhu Chen 50 / 84



Some Heuristic Functions for 8-Puzzle

▶ Manhattan Distance Heuristic:

The sum of the Manhattan distances of the tiles from their
goal positions

▶ Misplaced Tile Heuristic:

The number of tiles that are NOT in their goal positions

Both heuristic functions are admissible.

Initial State

5 3

8 7 6

2 4 1

Goal State

1 2 3

4 5 6

7 8

CS 486/686: Intro to AI Lecturer: Wenhu Chen 51 / 84



Constructing an Admissible Heuristic

1. Define a relaxed problem by simplifying or removing
constraints on the original problem.

2. Solve the relaxed problem without search.

3. The cost of the optimal solution to the relaxed problem is
an admissible heuristic for the original problem.

→ Simplifying or removing constraints — making the problem
easier.

For an easier problem, the cost of the optimal solution should be
smaller than that of the original problem.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 52 / 84



Constructing an Admissible Heuristic for 8-Puzzle

8-puzzle: A tile can move from square A to square B

▶ if A and B are adjacent, and

▶ B is empty.

Which heuristics can we derive from
relaxed versions of this problem?

CS 486/686: Intro to AI Lecturer: Wenhu Chen 53 / 84



Q: Constructing an Admissible Heuristic

Q #1: Which heuristics can we derive from the following
relaxed 8-puzzle problem?

A tile can move from square A to square B
if A and B are adjacent.

(A) The Manhattan distance heuristic

(B) The Misplaced tile heuristic

(C) Another heuristic not described above

CS 486/686: Intro to AI Lecturer: Wenhu Chen 54 / 84



Q: Constructing an Admissible Heuristic

Q #1: Which heuristics can we derive from the following
relaxed 8-puzzle problem?

A tile can move from square A to square B
if A and B are adjacent.

(A) The Manhattan distance heuristic

(B) The Misplaced tile heuristic

(C) Another heuristic not described above

→ (A) is correct

CS 486/686: Intro to AI Lecturer: Wenhu Chen 55 / 84



Desirable Heuristic Properties

▶ We want a heuristic to be admissible.

→ A* is optimal.

▶ Want a heuristic to have higher values (close to h∗).

→ The closer h is to h∗, the most accurate h is.

▶ Prefer a heuristic that is very different for different states.

→ h should help us choose among different paths. If h is
close to constant, not useful.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 56 / 84



Dominating Heuristic

Definition (dominating heuristic)

Given heuristics h1(n) and h2(n). h2(n) dominates h1(n) if
▶ (∀n (h2(n) ≥ h1(n))).
▶ (∃n (h2(n) > h1(n))).

Theorem
If h2(n) dominates h1(n), A* using h2 will never expand more
nodes than A* using h1.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 57 / 84



Q: Which Heuristic of 8-puzzle is Better?

Q #2: Which of the two heuristics of the 8-puzzle is better?

(A) The Manhattan distance heuristic dominates
the Misplaced tile heuristic.

(B) The Misplaced tile heuristic dominates
the Manhattan distance heuristic.

(C) Neither dominates the other one.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 58 / 84



Q: Which Heuristic of 8-puzzle is Better?

Q #2: Which of the two heuristics of the 8-puzzle is better?

(A) The Manhattan distance heuristic dominates
the Misplaced tile heuristic.

(B) The Misplaced tile heuristic dominates
the Manhattan distance heuristic.

(C) Neither dominates the other one.

→ If a tile is out of place, Misplaced tile will +1. Manhattan
distance will add at least 1 and maybe more. So Manhattan
distance heuristic always gives a larger value.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 59 / 84



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to AI Lecturer: Wenhu Chen 60 / 84



Cycle Pruning

▶ What is cycle pruning?

Whenever we realize that we are following a cycle, we should
stop expanding the path.

▶ Why do we want to perform cycle pruning?

Cycles may cause an algorithm to not terminate, e.g. DFS.
Exploring a cycle is a waste of time since it cannot be part of
a solution.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 61 / 84



Cycle Pruning

▶ What is cycle pruning?

Whenever we realize that we are following a cycle, we should
stop expanding the path.

▶ Why do we want to perform cycle pruning?

Cycles may cause an algorithm to not terminate, e.g. DFS.
Exploring a cycle is a waste of time since it cannot be part of
a solution.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 61 / 84



Cycle Pruning

▶ What is cycle pruning?

Whenever we realize that we are following a cycle, we should
stop expanding the path.

▶ Why do we want to perform cycle pruning?

Cycles may cause an algorithm to not terminate, e.g. DFS.
Exploring a cycle is a waste of time since it cannot be part of
a solution.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 61 / 84



Cycle Pruning

▶ What is cycle pruning?

Whenever we realize that we are following a cycle, we should
stop expanding the path.

▶ Why do we want to perform cycle pruning?

Cycles may cause an algorithm to not terminate, e.g. DFS.
Exploring a cycle is a waste of time since it cannot be part of
a solution.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 61 / 84



Search w/ Cycle Pruning

▶ How do we perform cycle pruning?

Algorithm 1 Search w/ Cycle Pruning

1: ...
2: for every neighbour n of nk do
3: if n ̸∈ ⟨n0, . . . , nk⟩ then
4: add ⟨n0, . . . , nk, n⟩ to frontier;

5: ...

▶ What is the complexity of cycle pruning for DFS and BFS?

Time complexity: linear to the path length.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 62 / 84



Search w/ Cycle Pruning

▶ How do we perform cycle pruning?

Algorithm 2 Search w/ Cycle Pruning

1: ...
2: for every neighbour n of nk do
3: if n ̸∈ ⟨n0, . . . , nk⟩ then
4: add ⟨n0, . . . , nk, n⟩ to frontier;

5: ...

▶ What is the complexity of cycle pruning for DFS and BFS?

Time complexity: linear to the path length.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 62 / 84



Search w/ Cycle Pruning

▶ How do we perform cycle pruning?

Algorithm 3 Search w/ Cycle Pruning

1: ...
2: for every neighbour n of nk do
3: if n ̸∈ ⟨n0, . . . , nk⟩ then
4: add ⟨n0, . . . , nk, n⟩ to frontier;

5: ...

▶ What is the complexity of cycle pruning for DFS and BFS?

Time complexity: linear to the path length.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 62 / 84



Search w/ Cycle Pruning

▶ How do we perform cycle pruning?

Algorithm 4 Search w/ Cycle Pruning

1: ...
2: for every neighbour n of nk do
3: if n ̸∈ ⟨n0, . . . , nk⟩ then
4: add ⟨n0, . . . , nk, n⟩ to frontier;

5: ...

▶ What is the complexity of cycle pruning for DFS and BFS?

Time complexity: linear to the path length.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 62 / 84



Multiple-Path Pruning

▶ Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard
other paths to the same node.

▶ What is the relationship between cycle pruning
and multi-path pruning?

Cycle pruning is a special case of multi-path pruning.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 63 / 84



Multiple-Path Pruning

▶ Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard
other paths to the same node.

▶ What is the relationship between cycle pruning
and multi-path pruning?

Cycle pruning is a special case of multi-path pruning.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 63 / 84



Multiple-Path Pruning

▶ Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard
other paths to the same node.

▶ What is the relationship between cycle pruning
and multi-path pruning?

Cycle pruning is a special case of multi-path pruning.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 63 / 84



Multiple-Path Pruning

▶ Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard
other paths to the same node.

▶ What is the relationship between cycle pruning
and multi-path pruning?

Cycle pruning is a special case of multi-path pruning.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 63 / 84



Search w/ Multi-Path Pruning

How do we perform multi-path pruning?

Algorithm 5 Search w/ Multi-Path Pruning

1: procedure Search(Graph, Start node s, Goal test goal(n))
2: frontier := {⟨s⟩};
3: explored := {};
4: while frontier is not empty do
5: select and remove path ⟨n0, . . . , nk⟩ from frontier;
6: if nk ̸∈ explored then
7: add nk to explored
8: if goal(nk) then
9: return ⟨n0, . . . , nk⟩;

10: for every neighbour n of nk do
11: add ⟨n0, . . . , nk, n⟩ to frontier;

12: return no solution

CS 486/686: Intro to AI Lecturer: Wenhu Chen 64 / 84



Search w/ Multi-Path Pruning

How do we perform multi-path pruning?

Algorithm 6 Search w/ Multi-Path Pruning

1: procedure Search(Graph, Start node s, Goal test goal(n))
2: frontier := {⟨s⟩};
3: explored := {};
4: while frontier is not empty do
5: select and remove path ⟨n0, . . . , nk⟩ from frontier;
6: if nk ̸∈ explored then
7: add nk to explored
8: if goal(nk) then
9: return ⟨n0, . . . , nk⟩;

10: for every neighbour n of nk do
11: add ⟨n0, . . . , nk, n⟩ to frontier;

12: return no solution

CS 486/686: Intro to AI Lecturer: Wenhu Chen 64 / 84



Search w/ Multi-Path Pruning

There are some caveats:

▶ Node will be added to the ‘explored’ set once it’s explored

▶ The longer paths leading to ‘explored’ set will still be added
to frontier, they are just not explored.

▶ It saves computation but increases space consumption.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 65 / 84



A problem with multi-path pruning

▶ Multi-path pruning says that we keep the first path to a node
and discard the rest.

▶ What if the first path to a node is not the least-cost path?

▶ Can multi-path pruning cause a search algorithm to
fail to find the optimal solution?

CS 486/686: Intro to AI Lecturer: Wenhu Chen 66 / 84



Lowest-cost-first search w/ multi-path pruning

Can Lowest-Cost-First Search with multi-path pruning
discard the optimal solution?

(A) Yes, it is possible.

(B) No, it is not possible.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 67 / 84



Lowest-cost-first search w/ multi-path pruning

Can Lowest-Cost-First Search with multi-path pruning
discard the optimal solution?

(A) Yes, it is possible.

(B) No, it is not possible.

→ (B) No, it is not possible.
LCFS always finds the least-cost path first.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 68 / 84



A* search w/ multi-path pruning

Can A* search with an admissible heuristic and multi-path pruning
discard the optimal solution?

(A) Yes, it is possible.

(B) No, it is not possible.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 69 / 84



A* search w/ multi-path pruning

Can A* search with an admissible heuristic and multi-path pruning
discard the optimal solution?

(A) Yes, it is possible.

(B) No, it is not possible.

→ (A) Yes, it is possible.

When we select a path to a node for the first time,
this path may not be the least-cost path to the node.

A* with multi-path pruning is not optimal.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 70 / 84



A* search w/ multi-path pruning

S B

C

D

E G

h(C) = 20

h(B) = 2

h(D) = 20

h(E) = 4 h(G) = 0

1

2

2

203

4

2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 71 / 84



A* search w/ multi-path pruning

Frontier: (S) → (SB: 4, SC: 21, SD: 22)
Explored: (S)

S B

C

D

h(C) = 20

h(B) = 2

h(D) = 20

1

2

2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 72 / 84



A* search w/ multi-path pruning

Frontier: (SB: 4, SC: 21, SD: 22) → (SBE: 9, SC: 21, SD: 22)
Explored: (S, B)

S B

C

D

E

h(C) = 20

h(B) = 2

h(D) = 20

h(E) = 4

1

2

2

3

CS 486/686: Intro to AI Lecturer: Wenhu Chen 73 / 84



A* search w/ multi-path pruning

Frontier: (SBE: 9, SC: 21, SD: 22) → (SC: 21, SD: 22, SBEG: 25)
Explored: (S, B, E)

S B

C

D

E G

h(C) = 20

h(B) = 2

h(D) = 20

h(E) = 4 h(G) = 0

1

2

2

3 20

CS 486/686: Intro to AI Lecturer: Wenhu Chen 74 / 84



A* search w/ multi-path pruning

Frontier: (SBE: 9, SC: 21, SD: 22) → (SCE: 7, SD: 22, SBEG: 25)
Explored: (S, B, E)

S B

C

D

E G

h(C) = 20

h(B) = 2

h(D) = 20

h(E) = 4 h(G) = 0

1

2

2

3 20

2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 75 / 84



A* search w/ multi-path pruning

Frontier: (SCE: 7, SD: 22, SBEG: 25) → (SD: 22, SBEG: 25)
Explored: (S, B, E)

S B

C

D

E G

h(C) = 20

h(B) = 2

h(D) = 20

h(E) = 4 h(G) = 0

1

2

2

3 20

2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 76 / 84



A* search w/ multi-path pruning

Frontier: (SD: 22, SBEG: 25) → (SDE: 8, SBEG: 25)
Explored: (S, B, E)

S B

C

D

E G

h(C) = 20

h(B) = 2

h(D) = 20

h(E) = 4 h(G) = 0

1

2

2

3 20

2

2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 77 / 84



A* search w/ multi-path pruning

Frontier: (SDE: 8, SBEG: 25) → (SBEG: 25)
Explored: (S, B, E)

S B

C

D

E G

h(C) = 20

h(B) = 2

h(D) = 20

h(E) = 4 h(G) = 0

1

2

2

3 20

2

2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 78 / 84



A* search w/ multi-path pruning

Frontier: (SBEG: 25) → ()
Explored: (S, B, E, G)

S B

C

D

E G

h(C) = 20

h(B) = 2

h(D) = 20

h(E) = 4 h(G) = 0

1

2

2

3 20

2

2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 79 / 84



Finding optimal solution w/ multi-path pruning

What if a subsequent path to n is shorter than the first path
found?

▶ Remove all paths from the frontier that use the longer path.

▶ Change the initial segment of the paths on the frontier
to use the shorter path.

▶ Make sure that we find the least-cost path to a node first.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 80 / 84



When the does multi-path pruning not work?

Assuming we have a frontier (s → n, · · · , s → n′), and we are
exploring node n.

▶ If there exists another path through n′ to n with lower f-value.

▶ 1) we have h(n) + cost(n) > h(n) + cost(n′) + cost(n′, n),
e.g. cost(n)− cost(n′) > cost(n′, n)

▶ 2) node n is already explored, so
h(n) + cost(n) ≤ h(n′) + cost(n′)

▶ Combine these two, we have
h(n′)− h(n) ≥ cost(n)− cost(n′) > cost(n′, n)

▶ Such scenario only happens when there exists two nodes n
and n′ with h(n′)− h(n) > cost(n′, n).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 81 / 84



When the does multi-path pruning not work?

Assuming we have a frontier (s → n, · · · , s → n′), and we are
exploring node n.

▶ If there exists another path through n′ to n with lower f-value.

▶ 1) we have h(n) + cost(n) > h(n) + cost(n′) + cost(n′, n),
e.g. cost(n)− cost(n′) > cost(n′, n)

▶ 2) node n is already explored, so
h(n) + cost(n) ≤ h(n′) + cost(n′)

▶ Combine these two, we have
h(n′)− h(n) ≥ cost(n)− cost(n′) > cost(n′, n)

▶ Such scenario only happens when there exists two nodes n
and n′ with h(n′)− h(n) > cost(n′, n).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 81 / 84



When the does multi-path pruning not work?

Assuming we have a frontier (s → n, · · · , s → n′), and we are
exploring node n.

▶ If there exists another path through n′ to n with lower f-value.

▶ 1) we have h(n) + cost(n) > h(n) + cost(n′) + cost(n′, n),
e.g. cost(n)− cost(n′) > cost(n′, n)

▶ 2) node n is already explored, so
h(n) + cost(n) ≤ h(n′) + cost(n′)

▶ Combine these two, we have
h(n′)− h(n) ≥ cost(n)− cost(n′) > cost(n′, n)

▶ Such scenario only happens when there exists two nodes n
and n′ with h(n′)− h(n) > cost(n′, n).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 81 / 84



When the does multi-path pruning not work?

Assuming we have a frontier (s → n, · · · , s → n′), and we are
exploring node n.

▶ If there exists another path through n′ to n with lower f-value.

▶ 1) we have h(n) + cost(n) > h(n) + cost(n′) + cost(n′, n),
e.g. cost(n)− cost(n′) > cost(n′, n)

▶ 2) node n is already explored, so
h(n) + cost(n) ≤ h(n′) + cost(n′)

▶ Combine these two, we have
h(n′)− h(n) ≥ cost(n)− cost(n′) > cost(n′, n)

▶ Such scenario only happens when there exists two nodes n
and n′ with h(n′)− h(n) > cost(n′, n).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 81 / 84



When the does multi-path pruning not work?

Assuming we have a frontier (s → n, · · · , s → n′), and we are
exploring node n.

▶ If there exists another path through n′ to n with lower f-value.

▶ 1) we have h(n) + cost(n) > h(n) + cost(n′) + cost(n′, n),
e.g. cost(n)− cost(n′) > cost(n′, n)

▶ 2) node n is already explored, so
h(n) + cost(n) ≤ h(n′) + cost(n′)

▶ Combine these two, we have
h(n′)− h(n) ≥ cost(n)− cost(n′) > cost(n′, n)

▶ Such scenario only happens when there exists two nodes n
and n′ with h(n′)− h(n) > cost(n′, n).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 81 / 84



Consistent Heuristic

▶ An admissible heuristic requires that:
For any node m and any goal node g,

h(m)− h(g) ≤ cost(m, g).

▶ To ensure that A* with multi-path pruning is optimal,
we need a consistent heuristic function: For any two nodes m
and n,

h(m)− h(n) ≤ cost(m,n).

▶ A consistent heuristic satisfies the monotone restriction:
For any edge from m to n,

h(m)− h(n) ≤ cost(m,n).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 82 / 84



Consistent Heuristic

▶ An admissible heuristic requires that:
For any node m and any goal node g,

h(m)− h(g) ≤ cost(m, g).

▶ To ensure that A* with multi-path pruning is optimal,
we need a consistent heuristic function: For any two nodes m
and n,

h(m)− h(n) ≤ cost(m,n).

▶ A consistent heuristic satisfies the monotone restriction:
For any edge from m to n,

h(m)− h(n) ≤ cost(m,n).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 82 / 84



Consistent Heuristic

▶ An admissible heuristic requires that:
For any node m and any goal node g,

h(m)− h(g) ≤ cost(m, g).

▶ To ensure that A* with multi-path pruning is optimal,
we need a consistent heuristic function: For any two nodes m
and n,

h(m)− h(n) ≤ cost(m,n).

▶ A consistent heuristic satisfies the monotone restriction:
For any edge from m to n,

h(m)− h(n) ≤ cost(m,n).

CS 486/686: Intro to AI Lecturer: Wenhu Chen 82 / 84



Constructing Consistent Heuristics

▶ Most admissible heuristic functions are consistent.

▶ It’s challenging to come up with a heuristic function that is
admissible but not consistent.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 83 / 84



Summary of Search Strategies

Strategy Frontier Selection Halts? Space Time

Depth-first Last node added No Linear Exp

Breadth-first First node added Yes Exp Exp

Lowest-cost-first min cost(n) Yes Exp Exp

Greedy Best-first min h(n) No Exp Exp

A* min cost(n) + h(n) Yes Exp Exp

CS 486/686: Intro to AI Lecturer: Wenhu Chen 84 / 84


	Learning Goals
	Why Heuristic Search
	LCFS, GBFS, and A*
	Lowest-Cost-First Search
	Greedy Best-First Search
	A* Search

	Designing an Admissible Heuristic
	Pruning the Search Space

