Heuristic Search

Wenhu Chen

Lecture 18

CS 486/686: Intro to AI Lecturer: Wenhu Chen 1 / 84

Outline

[Learning Goals](#page-2-0)

[Why Heuristic Search](#page-3-0)

[LCFS, GBFS, and A*](#page-6-0) [Lowest-Cost-First Search](#page-10-0) [Greedy Best-First Search](#page-27-0) [A* Search](#page-41-0)

[Designing an Admissible Heuristic](#page-59-0)

[Pruning the Search Space](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 2 / 84

Learning goals

- ▶ Describe motivations for applying heuristic search algorithms.
- ▶ Trace the execution of and implement the Lowest-cost-first search, Greedy best-first search and A* search algorithm.
- ▶ Describe properties of the Lowest-cost-first, Greedy best-first and A* search algorithms.
- ▶ Design an admissible heuristic function for a search problem. Describe strategies for choosing among multiple heuristic functions.
- ▶ Describes strategies for pruning a search space.

[Learning Goals](#page-2-0)

[Why Heuristic Search](#page-3-0)

[LCFS, GBFS, and A*](#page-6-0)

[Designing an Admissible Heuristic](#page-59-0)

[Pruning the Search Space](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 4 / 84

Why Heuristic Search?

How would \sim choose which one of the two states to expand?

- ▶ an uninformed search algorithm
- \blacktriangleright humans

Why Heuristic Search

An uninformed search algorithm

- ▶ considers every state to be the same.
- \triangleright does not know which state is closer to the goal.
- ▶ may not find the optimal solution.

An heuristic search algorithm

- \triangleright uses heuristics to estimate how close the state is to a goal.
- \blacktriangleright try to find the optimal solution.

[Learning Goals](#page-2-0)

[Why Heuristic Search](#page-3-0)

[LCFS, GBFS, and A*](#page-6-0)

[Lowest-Cost-First Search](#page-10-0) [Greedy Best-First Search](#page-27-0)

[A* Search](#page-41-0)

[Designing an Admissible Heuristic](#page-59-0)

[Pruning the Search Space](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 7 / 84

Suppose that we are executing a search algorithm and we have added a path ending at n to the frontier.

 $cost(n)$ is the actual cost of the path ending at n.

The Heuristic Function

Definition (search heuristic)

A search heuristic $h(n)$ is an estimate of the cost of the cheapest path from node n to a goal node.

In general, $h(n)$ can be arbitrary.

However, a good heuristic function has the following properties.

- \blacktriangleright problem-specific.
- \blacktriangleright non-negative.
- \blacktriangleright $h(n) = 0$ if n is a goal node.
- \blacktriangleright $h(n)$ must be easy to compute (without search).

LCFS, GBFS, and A*

- \blacktriangleright LCFS: remove the path with the lowest cost $cost(n)$.
- ▶ GBFS: remove the path with the lowest heuristic value $h(n)$.
- \triangleright A^{*}: remove the path with the lowest cost + heuristic value $cost(n) + h(n)$.

[Learning Goals](#page-2-0)

[Why Heuristic Search](#page-3-0)

[LCFS, GBFS, and A*](#page-6-0) [Lowest-Cost-First Search](#page-10-0) [Greedy Best-First Search](#page-27-0) [A* Search](#page-41-0)

[Designing an Admissible Heuristic](#page-59-0)

[Pruning the Search Space](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 11 / 84

Lowest-cost-first search

- \blacktriangleright Frontier is a priority queue ordered by $cost(n)$.
- \blacktriangleright Expand the path with the lowest $cost(n)$.
- \rightarrow a.k.a. Dijkstra's shortest path algorithm.

If there is a tie, remove nodes from the frontier in alphabetical order.

Frontier: (S)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 14 / 84

Frontier: $(S: 0) \rightarrow (SB: 1, SC: 1)$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 15 / 84

Frontier: (SB: 1, SC: 1) \rightarrow (SC: 1, SBE: 2, SBD: 10)

Frontier: (SC: 1, SBE: 2, SBD: 10) \rightarrow (SBE: 2, SCH: 2, SBD: 10)

Frontier: (SBE: 2, SCH: 2, SBD: 10) \rightarrow (SCH: 2, SBEF: 3, SBD: 10)

Frontier: (SCH: 2, SBEF: 3, SBD: 10) \rightarrow (SBEF: 3, SBD: 10)

Frontier: (SBEF: 3, SBD: 10) \rightarrow (SBD: 10)

Frontier: $(SBD: 10) \rightarrow (SBDF: 11, SBDG: 11)$

Frontier: (SBDF: 11, SBDG: 11) \rightarrow (SBDG: 11)

Frontier: $(SBDG: 11) \rightarrow ()$

▶ Space and Time Complexities

▶ Space and Time Complexities

Both complexities are exponential. LCFS examines a lot of paths to ensure that it returns the optimal solution first.

▶ Space and Time Complexities

Both complexities are exponential. LCFS examines a lot of paths to ensure that it returns the optimal solution first.

▶ Completeness and Optimality

▶ Space and Time Complexities

Both complexities are exponential. LCFS examines a lot of paths to ensure that it returns the optimal solution first.

▶ Completeness and Optimality

Yes and yes under mild conditions: (1) The branching factor is finite. (2) The cost of every edge is bounded below by a positive constant.

[Learning Goals](#page-2-0)

[Why Heuristic Search](#page-3-0)

[LCFS, GBFS, and A*](#page-6-0)

[Lowest-Cost-First Search](#page-10-0)

[Greedy Best-First Search](#page-27-0)

[A* Search](#page-41-0)

[Designing an Admissible Heuristic](#page-59-0)

[Pruning the Search Space](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 25 / 84

Greedy Best-First Search

- \blacktriangleright Frontier is a priority queue ordered by $h(n)$.
- \blacktriangleright Expand the node with the lowest $h(n)$.

If there is a tie, remove nodes from the frontier in alphabetical order.

Frontier: $(S) \rightarrow (SC: 3, SB: 7)$

Frontier: (SC: 3, SB: 7) \rightarrow (SB: 7, SCH: 100)

Frontier: (SB: 7, SCH: 100) \rightarrow (SBD: 1, SBE: 4, SCH: 100)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 30 / 84

Frontier: (SBD: 1, SBE: 4, SCH: 100) \rightarrow (SBDG: 0, SBE: 4, SCH: 100)

Frontier: (SBDG: 0, SBE: 4, SCH: 100) \rightarrow (SBE: 4, SCH: 100)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 32 / 84

Properties of GBFS

Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

No, GBFS is not complete. It could be stuck in a cycle. No, GBFS is not optimal. GBFS may return a sub-optimal path first.

Greedy BFS: will it find a solution/terminate?

 \rightarrow The cost of an arc is its length.

The heuristic function is the Euclidean straight line distance.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 34 / 84

Greedy BFS: will it find the optimal solution?

 \rightarrow Path found by Greedy BFS: $S \rightarrow A \rightarrow G$, cost = 21. The optimal solution: $S \to B \to C \to G$, cost = 11.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 35 / 84

[Learning Goals](#page-2-0)

[Why Heuristic Search](#page-3-0)

[LCFS, GBFS, and A*](#page-6-0)

[Lowest-Cost-First Search](#page-10-0)

[Greedy Best-First Search](#page-27-0)

[A* Search](#page-41-0)

[Designing an Admissible Heuristic](#page-59-0)

[Pruning the Search Space](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 36 / 84

A* Search

- ▶ Frontier is a priority queue ordered by $f(n) = cost(n) + h(n)$.
- \blacktriangleright Expand the node with the lowest $f(n)$.

Trace A* search on a search graph

If there is a tie, remove nodes from the frontier in alphabetical order.

Frontier: (S: 8)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 39 / 84

Frontier: $(S: 8) \rightarrow (SC: 4, SB: 8)$

Frontier: (SC: 4, SB: 8) \rightarrow (SB: 8, SCH: 102)

Frontier: (SB: 8, SCH: 102) \rightarrow (SBE: 6, SBD:11, SCH: 102)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 42 / 84

Trace A* on a search graph Frontier: (SBE: 6, SBD:11, SCH: 102) \rightarrow (SBD:11, SBEF: 17, SCH: 102)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 43 / 84

Frontier: (SBD:11, SBEF: 17, SCH: 102) \rightarrow (SBDG: 11, SBDF: 17, SBEF: 17, SCH: 102)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 44 / 84

Frontier: (SBDG: 11, SBDF: 17, SBEF: 17, SCH: 102) \rightarrow (SBDF: 17, SBEF: 17, SCH: 102)

▶ Space and Time Complexities

Both complexities are exponential.

Both complexities are exponential.

Both complexities are exponential.

▶ Completeness and Optimality

Yes and Yes, given mild conditions on the heuristic function.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 46 / 84

Definition (admissible heuristic)

A heuristic $h(n)$ is admissible if it never over-estimates the cost of the cheapest path from node n to a goal node.

Theorem (Optimality of A*)

If the heuristic $h(n)$ is admissible, the solution found by A^* is optimal.

A* is Optimal

- \triangleright Assuming you have many paths in the frontier: $(S \to G : C^*, \cdots, S \to N : C^n)$, and $C^* \leq C^n$.
- ▶ If there a path through N to G has a lower cost of $C' < C^*$.
- According to admissibility, $C^n \leq C' < C^*$.
- ▶ It's contradictory to our assumption.

Among all optimal algorithms that start from the same start node and use the same heuristic, A* expands the fewest nodes.

Among all optimal algorithms that start from the same start node and use the same heuristic, A* expands the fewest nodes.

 \rightarrow No algorithm with the same information can do better.

A* expands the minimum number of nodes to find the optimal solution.

Intuition for a proof: any algorithm that does not expand all nodes with $f(n) < C^*$ run the risk of missing the optimal solution.

[Learning Goals](#page-2-0)

[Why Heuristic Search](#page-3-0)

[LCFS, GBFS, and A*](#page-6-0)

[Designing an Admissible Heuristic](#page-59-0)

[Pruning the Search Space](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 50 / 84

Some Heuristic Functions for 8-Puzzle

▶ Manhattan Distance Heuristic:

The sum of the Manhattan distances of the tiles from their goal positions

▶ Misplaced Tile Heuristic:

The number of tiles that are NOT in their goal positions Both heuristic functions are admissible.

Goal State

CS 486/686: Intro to AI Lecturer: Wenhu Chen 51 / 84

Constructing an Admissible Heuristic

- 1. Define a relaxed problem by simplifying or removing constraints on the original problem.
- 2. Solve the relaxed problem without search.
- 3. The cost of the optimal solution to the relaxed problem is an admissible heuristic for the original problem.

 \rightarrow Simplifying or removing constraints — making the problem easier.

For an easier problem, the cost of the optimal solution should be smaller than that of the original problem.

Constructing an Admissible Heuristic for 8-Puzzle

8-puzzle: A tile can move from square A to square B

▶ if A and B are adjacent, and

 \blacktriangleright B is empty.

Which heuristics can we derive from relaxed versions of this problem?

Q: Constructing an Admissible Heuristic

 $Q \#1$: Which heuristics can we derive from the following relaxed 8-puzzle problem?

A tile can move from square A to square B if A and B are adjacent.

(A) The Manhattan distance heuristic

(B) The Misplaced tile heuristic

(C) Another heuristic not described above

Q: Constructing an Admissible Heuristic

 $Q \#1$: Which heuristics can we derive from the following relaxed 8-puzzle problem?

A tile can move from square A to square B if A and B are adjacent.

(A) The Manhattan distance heuristic

- (B) The Misplaced tile heuristic
- (C) Another heuristic not described above
- \rightarrow (A) is correct

Desirable Heuristic Properties

 \triangleright We want a heuristic to be admissible.

 \rightarrow A* is optimal.

▶ Want a heuristic to have higher values (close to h^*).

 \rightarrow The closer h is to h^* , the most accurate h is.

▶ Prefer a heuristic that is very different for different states.

 $\rightarrow h$ should help us choose among different paths. If h is close to constant, not useful.

Dominating Heuristic

Definition (dominating heuristic)

Given heuristics $h_1(n)$ and $h_2(n)$. $h_2(n)$ dominates $h_1(n)$ if

$$
\triangleright (\forall n \ (h_2(n) \ge h_1(n))).
$$

\n
$$
\triangleright (\exists n \ (h_2(n) > h_1(n))).
$$

Theorem

If $h_2(n)$ dominates $h_1(n)$, A^* using h_2 will never expand more nodes than A^* using h_1 .

Q: Which Heuristic of 8-puzzle is Better?

- $Q \#2$: Which of the two heuristics of the 8-puzzle is better?
- (A) The Manhattan distance heuristic dominates the Misplaced tile heuristic.
- (B) The Misplaced tile heuristic dominates the Manhattan distance heuristic.
- (C) Neither dominates the other one.

Q: Which Heuristic of 8-puzzle is Better?

 $Q \#2$: Which of the two heuristics of the 8-puzzle is better?

- (A) The Manhattan distance heuristic dominates the Misplaced tile heuristic.
- (B) The Misplaced tile heuristic dominates the Manhattan distance heuristic.
- (C) Neither dominates the other one.

 \rightarrow If a tile is out of place, Misplaced tile will $+1$. Manhattan distance will add at least 1 and maybe more. So Manhattan distance heuristic always gives a larger value.

[Learning Goals](#page-2-0)

[Why Heuristic Search](#page-3-0)

[LCFS, GBFS, and A*](#page-6-0)

[Designing an Admissible Heuristic](#page-59-0)

[Pruning the Search Space](#page-69-0)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 60 / 84

Cycle Pruning

▶ What is cycle pruning?

Cycle Pruning

 \blacktriangleright What is cycle pruning?

Whenever we realize that we are following a cycle, we should stop expanding the path.
Cycle Pruning

 \triangleright What is cycle pruning?

Whenever we realize that we are following a cycle, we should stop expanding the path.

 \triangleright Why do we want to perform cycle pruning?

Cycle Pruning

 \blacktriangleright What is cycle pruning?

Whenever we realize that we are following a cycle, we should stop expanding the path.

 \triangleright Why do we want to perform cycle pruning?

Cycles may cause an algorithm to not terminate, e.g. DFS. Exploring a cycle is a waste of time since it cannot be part of a solution.

▶ How do we perform cycle pruning?

▶ How do we perform cycle pruning?

Algorithm 2 Search w/ Cycle Pruning

```
1: ...
2: for every neighbour n of n_k do
3: if n \notin \langle n_0, \ldots, n_k \rangle then
4: add \langle n_0, \ldots, n_k, n \rangle to frontier;
5: ...
```
▶ How do we perform cycle pruning?

Algorithm 3 Search w/ Cycle Pruning

```
1: ...
2: for every neighbour n of n_k do
3: if n \notin \langle n_0, \ldots, n_k \rangle then
4: add \langle n_0, \ldots, n_k, n \rangle to frontier;
5: ...
```
▶ What is the complexity of cycle pruning for DFS and BFS?

▶ How do we perform cycle pruning?

Algorithm 4 Search w/ Cycle Pruning

```
1: ...
2: for every neighbour n of n_k do
3: if n \notin \langle n_0, \ldots, n_k \rangle then
4: add \langle n_0, \ldots, n_k, n \rangle to frontier;
5: ...
```
▶ What is the complexity of cycle pruning for DFS and BFS?

Time complexity: linear to the path length.

▶ Why do we want to perform multi-path pruning?

▶ Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard other paths to the same node.

 \triangleright Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard other paths to the same node.

 \triangleright What is the relationship between cycle pruning and multi-path pruning?

 \triangleright Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard other paths to the same node.

 \triangleright What is the relationship between cycle pruning and multi-path pruning?

Cycle pruning is a special case of multi-path pruning.

Search w/ Multi-Path Pruning

How do we perform multi-path pruning?

Search w/ Multi-Path Pruning

How do we perform multi-path pruning?

Algorithm 6 Search w/ Multi-Path Pruning

- 1: procedure $\text{SEARCH}(\text{Graph}, \text{Start node } s, \text{Goal test } goal(n))$
- 2: frontier := $\{\langle s \rangle\}$;
- 3: **explored :=** $\{\}$:
- 4: while frontier is not empty do
- 5: **select** and **remove** path $\langle n_0, \ldots, n_k \rangle$ from frontier;
- 6: if $n_k \notin$ explored then
- 7: **add** n_k to explored
- 8: **if** goal (n_k) then

9: return
$$
\langle n_0, \ldots, n_k \rangle
$$
;

- 10: **for every** neighbour n of n_k do
- 11: add $\langle n_0, \ldots, n_k, n \rangle$ to frontier;
- 12: return no solution

There are some caveats:

- ▶ Node will be added to the 'explored' set once it's explored
- ▶ The longer paths leading to 'explored' set will still be added to frontier, they are just not explored.
- ▶ It saves computation but increases space consumption.

A problem with multi-path pruning

- ▶ Multi-path pruning says that we keep the first path to a node and discard the rest.
- ▶ What if the first path to a node is not the least-cost path?
- ▶ Can multi-path pruning cause a search algorithm to fail to find the optimal solution?

Lowest-cost-first search w/ multi-path pruning

Can Lowest-Cost-First Search with multi-path pruning discard the optimal solution?

- (A) Yes, it is possible.
- (B) No, it is not possible.

Can Lowest-Cost-First Search with multi-path pruning discard the optimal solution?

(A) Yes, it is possible.

(B) No, it is not possible.

 \rightarrow (B) No, it is not possible. LCFS always finds the least-cost path first.

Can A* search with an admissible heuristic and multi-path pruning discard the optimal solution?

- (A) Yes, it is possible.
- (B) No, it is not possible.

Can A* search with an admissible heuristic and multi-path pruning discard the optimal solution?

- (A) Yes, it is possible.
- (B) No, it is not possible.
- \rightarrow (A) Yes, it is possible.

When we select a path to a node for the first time, this path may not be the least-cost path to the node.

A* with multi-path pruning is not optimal.

Frontier: $(S) \rightarrow (SB: 4, SC: 21, SD: 22)$ Explored: (S)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 72 / 84

Frontier: (SB: 4, SC: 21, SD: 22) \rightarrow (SBE: 9, SC: 21, SD: 22) Explored: (S, B)

Frontier: (SBE: 9, SC: 21, SD: 22) \rightarrow (SC: 21, SD: 22, SBEG: 25) Explored: (S, B, E)

CS 486/686: Intro to AI Lecturer: Wenhu Chen 74 / 84

Frontier: (SBE: 9, SC: 21, SD: 22) \rightarrow (SCE: 7, SD: 22, SBEG: 25) Explored: (S, B, E)

Frontier: (SCE: 7, SD: 22, SBEG: 25) \rightarrow (SD: 22, SBEG: 25) Explored: (S, B, E)

Frontier: (SD: 22, SBEG: 25) \rightarrow (SDE: 8, SBEG: 25) Explored: (S, B, E)

Frontier: (SDE: 8, SBEG: 25) \rightarrow (SBEG: 25) Explored: (S, B, E)

Finding optimal solution w/ multi-path pruning

What if a subsequent path to n is shorter than the first path found?

- \triangleright Remove all paths from the frontier that use the longer path.
- \triangleright Change the initial segment of the paths on the frontier to use the shorter path.
- \blacktriangleright Make sure that we find the least-cost path to a node first.

Assuming we have a frontier $(s\rightarrow n,\cdots,s\rightarrow n')$, and we are exploring node n .

If there exists another path through n' to n with lower f-value.

- If there exists another path through n' to n with lower f-value.
- 1) we have $h(n) + cost(n) > h(n) + cost(n') + cost(n', n)$, e.g. $cost(n) - cost(n') > cost(n', n)$

- If there exists another path through n' to n with lower f-value.
- 1) we have $h(n) + cost(n) > h(n) + cost(n') + cost(n', n)$, e.g. $cost(n) - cost(n') > cost(n', n)$
- \blacktriangleright 2) node *n* is already explored, so $h(n) + cost(n) \leq h(n') + cost(n')$

- If there exists another path through n' to n with lower f-value.
- 1) we have $h(n) + cost(n) > h(n) + cost(n') + cost(n', n)$, e.g. $cost(n) - cost(n') > cost(n', n)$
- \blacktriangleright 2) node *n* is already explored, so $h(n) + cost(n) \leq h(n') + cost(n')$
- \blacktriangleright Combine these two, we have $h(n') - h(n) \ge cost(n) - cost(n') > cost(n', n)$

- If there exists another path through n' to n with lower f-value.
- 1) we have $h(n) + cost(n) > h(n) + cost(n') + cost(n', n)$, e.g. $cost(n) - cost(n') > cost(n', n)$
- \blacktriangleright 2) node *n* is already explored, so $h(n) + cost(n) \leq h(n') + cost(n')$
- \blacktriangleright Combine these two, we have $h(n') - h(n) \ge cost(n) - cost(n') > cost(n', n)$
- \blacktriangleright Such scenario only happens when there exists two nodes n and n' with $h(n') - h(n) > cost(n', n)$.

Consistent Heuristic

 \blacktriangleright An admissible heuristic requires that: For any node m and any goal node q ,

$$
h(m) - h(g) \le cost(m, g).
$$

Consistent Heuristic

 \blacktriangleright An admissible heuristic requires that: For any node m and any goal node q ,

$$
h(m) - h(g) \le \cos t(m, g).
$$

 \blacktriangleright To ensure that A^* with multi-path pruning is optimal, we need a consistent heuristic function: For any two nodes m and n ,

$$
h(m) - h(n) \le \cos t(m, n).
$$

Consistent Heuristic

 \blacktriangleright An admissible heuristic requires that: For any node m and any goal node q ,

$$
h(m) - h(g) \le \cos t(m, g).
$$

 \blacktriangleright To ensure that A^* with multi-path pruning is optimal, we need a consistent heuristic function: For any two nodes m and n .

$$
h(m) - h(n) \le \cos t(m, n).
$$

 \triangleright A consistent heuristic satisfies the monotone restriction: For any edge from m to n ,

$$
h(m) - h(n) \le \cos t(m, n).
$$

CS 486/686: Intro to AI Lecturer: Wenhu Chen 82 / 84
Constructing Consistent Heuristics

- \triangleright Most admissible heuristic functions are consistent.
- ▶ It's challenging to come up with a heuristic function that is admissible but not consistent.

Summary of Search Strategies

