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Learning goals

▶ Describe motivations for applying heuristic search algorithms.

▶ Trace the execution of and implement the Lowest-cost-first
search, Greedy best-first search and A* search algorithm.

▶ Describe properties of the Lowest-cost-first, Greedy best-first
and A* search algorithms.

▶ Design an admissible heuristic function for a search problem.
Describe strategies for choosing among multiple heuristic
functions.

▶ Describes strategies for pruning a search space.
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Why Heuristic Search?

How would choose which one of the two states to expand?

▶ an uninformed search algorithm

▶ humans
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Why Heuristic Search

An uninformed search algorithm

▶ considers every state to be the same.

▶ does not know which state is closer to the goal.

▶ may not find the optimal solution.

An heuristic search algorithm

▶ uses heuristics to estimate how close the state is to a goal.

▶ try to find the optimal solution.
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The Cost Function

Suppose that we are executing a search algorithm
and we have added a path ending at n to the frontier.

cost(n) is the actual cost of the path ending at n.
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The Heuristic Function

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the cheapest
path from node n to a goal node.

In general, h(n) can be arbitrary.

However, a good heuristic function has the following properties.

▶ problem-specific.

▶ non-negative.

▶ h(n) = 0 if n is a goal node.

▶ h(n) must be easy to compute (without search).
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LCFS, GBFS, and A*

▶ LCFS: remove the path with the lowest cost cost(n).

▶ GBFS: remove the path with the lowest heuristic value h(n).

▶ A*: remove the path with the lowest cost + heuristic value
cost(n) + h(n).
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Lowest-cost-first search

▶ Frontier is a priority queue ordered by cost(n).

▶ Expand the path with the lowest cost(n).

→ a.k.a. Dijkstra’s shortest path algorithm.
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Trace LCFS on a search graph

If there is a tie, remove nodes from the frontier in alphabetical
order.
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Trace LCFS on a search graph

Frontier: (S)

S
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Trace LCFS on a search graph

Frontier: (S: 0) → (SB: 1, SC: 1)

S B

C

1

1
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Trace LCFS on a search graph

Frontier: (SB: 1, SC: 1) → (SC: 1, SBE: 2, SBD: 10)
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Trace LCFS on a search graph

Frontier: (SC: 1, SBE: 2, SBD: 10) → (SBE: 2, SCH: 2, SBD: 10)
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Trace LCFS on a search graph

Frontier: (SBE: 2, SCH: 2, SBD: 10) → (SCH: 2, SBEF: 3, SBD:
10)
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Trace LCFS on a search graph

Frontier: (SCH: 2, SBEF: 3, SBD: 10) → (SBEF: 3, SBD: 10)
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Trace LCFS on a search graph

Frontier: (SBEF: 3, SBD: 10) → (SBD: 10)
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Trace LCFS on a search graph

Frontier: (SBD: 10) → (SBDF: 11, SBDG: 11)
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Trace LCFS on a search graph

Frontier: (SBDF: 11, SBDG: 11) → (SBDG: 11)
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Trace LCFS on a search graph

Frontier: (SBDG: 11) → ()
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Properties of LCFS

▶ Space and Time Complexities

Both complexities are exponential.
LCFS examines a lot of paths to ensure that
it returns the optimal solution first.

▶ Completeness and Optimality

Yes and yes under mild conditions:
(1) The branching factor is finite.
(2) The cost of every edge is bounded below by a positive
constant.
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Greedy Best-First Search

▶ Frontier is a priority queue ordered by h(n).

▶ Expand the node with the lowest h(n).
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Trace GBFS on a search graph

If there is a tie, remove nodes from the frontier in alphabetical
order.
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Trace GBFS on a search graph

Frontier: (S) → (SC: 3, SB: 7)

S B

C

h(C) = 3

h(B) = 7
1

1
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Trace GBFS on a search graph

Frontier: (SC: 3, SB: 7) → (SB: 7, SCH: 100)

S B

C H

h(C) = 3

h(B) = 7

h(H) = 100
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1
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Trace GBFS on a search graph

Frontier: (SB: 7, SCH: 100) → (SBD: 1, SBE: 4, SCH: 100)
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Trace GBFS on a search graph
Frontier: (SBD: 1, SBE: 4, SCH: 100) → (SBDG: 0, SBE: 4, SCH:
100)
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Trace GBFS on a search graph

Frontier: (SBDG: 0, SBE: 4, SCH: 100) → (SBE: 4, SCH: 100)
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Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

No, GBFS is not complete. It could be stuck in a cycle.
No, GBFS is not optimal. GBFS may return a sub-optimal
path first.
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Greedy BFS: will it find a solution/terminate?

→ The cost of an arc is its length.

The heuristic function is the Euclidean straight line distance.
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Greedy BFS: will it find the optimal solution?

→ Path found by Greedy BFS: S → A → G, cost = 21.

The optimal solution: S → B → C → G, cost = 11.
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A* Search

▶ Frontier is a priority queue ordered by f(n) = cost(n) + h(n).

▶ Expand the node with the lowest f(n).
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Trace A* search on a search graph

If there is a tie, remove nodes from the frontier in alphabetical
order.
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Trace A* on a search graph

Frontier: (S: 8)

S

h(S) = 8
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Trace A* on a search graph

Frontier: (S: 8) → (SC: 4, SB: 8)

S B

C

h(C) = 3

h(B) = 7
1

1
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Trace A* on a search graph

Frontier: (SC: 4, SB: 8) → (SB: 8, SCH: 102)

S B

C H

h(C) = 3

h(B) = 7
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Trace A* on a search graph

Frontier: (SB: 8, SCH: 102) → (SBE: 6, SBD:11, SCH: 102)
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Trace A* on a search graph
Frontier: (SBE: 6, SBD:11, SCH: 102) → (SBD:11, SBEF: 17,
SCH: 102)
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Trace A* on a search graph
Frontier: (SBD:11, SBEF: 17, SCH: 102) → (SBDG: 11, SBDF:
17, SBEF: 17, SCH: 102)
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Trace A* on a search graph
Frontier: (SBDG: 11, SBDF: 17, SBEF: 17, SCH: 102) → (SBDF:
17, SBEF: 17, SCH: 102)
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Properties of A* Search

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

Yes and Yes, given mild conditions on the heuristic function.
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A* is Optimal

Definition (admissible heuristic)

A heuristic h(n) is admissible if it never over-estimates
the cost of the cheapest path from node n to a goal node.

Theorem (Optimality of A*)

If the heuristic h(n) is admissible,
the solution found by A* is optimal.
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A* is Optimal

▶ Assuming you have many paths in the frontier:
(S → G : C∗, · · · , S → N : Cn), and C∗ ≤ Cn.

▶ If there a path through N to G has a lower cost of C ′ < C∗.

▶ According to admissibility, Cn ≤ C ′ < C∗.

▶ It’s contradictory to our assumption.
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A* is Optimally Efficient

Among all optimal algorithms that start from the same start node
and use the same heuristic, A* expands the fewest nodes.

→ No algorithm with the same information can do better.

A* expands the minimum number of nodes to find the optimal
solution.

Intuition for a proof: any algorithm that does not expand all nodes
with f(n) < C∗ run the risk of missing the optimal solution.
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Some Heuristic Functions for 8-Puzzle

▶ Manhattan Distance Heuristic:

The sum of the Manhattan distances of the tiles from their
goal positions

▶ Misplaced Tile Heuristic:

The number of tiles that are NOT in their goal positions

Both heuristic functions are admissible.

Initial State
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8 7 6

2 4 1

Goal State

1 2 3

4 5 6

7 8
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Constructing an Admissible Heuristic

1. Define a relaxed problem by simplifying or removing
constraints on the original problem.

2. Solve the relaxed problem without search.

3. The cost of the optimal solution to the relaxed problem is
an admissible heuristic for the original problem.

→ Simplifying or removing constraints — making the problem
easier.

For an easier problem, the cost of the optimal solution should be
smaller than that of the original problem.
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Constructing an Admissible Heuristic for 8-Puzzle

8-puzzle: A tile can move from square A to square B

▶ if A and B are adjacent, and

▶ B is empty.

Which heuristics can we derive from
relaxed versions of this problem?
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Q: Constructing an Admissible Heuristic

Q #1: Which heuristics can we derive from the following
relaxed 8-puzzle problem?

A tile can move from square A to square B
if A and B are adjacent.

(A) The Manhattan distance heuristic

(B) The Misplaced tile heuristic

(C) Another heuristic not described above
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Q: Constructing an Admissible Heuristic

Q #1: Which heuristics can we derive from the following
relaxed 8-puzzle problem?

A tile can move from square A to square B
if A and B are adjacent.

(A) The Manhattan distance heuristic

(B) The Misplaced tile heuristic

(C) Another heuristic not described above

→ (A) is correct
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Desirable Heuristic Properties

▶ We want a heuristic to be admissible.

→ A* is optimal.

▶ Want a heuristic to have higher values (close to h∗).

→ The closer h is to h∗, the most accurate h is.

▶ Prefer a heuristic that is very different for different states.

→ h should help us choose among different paths. If h is
close to constant, not useful.
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Dominating Heuristic

Definition (dominating heuristic)

Given heuristics h1(n) and h2(n). h2(n) dominates h1(n) if
▶ (∀n (h2(n) ≥ h1(n))).
▶ (∃n (h2(n) > h1(n))).

Theorem
If h2(n) dominates h1(n), A* using h2 will never expand more
nodes than A* using h1.
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Q: Which Heuristic of 8-puzzle is Better?

Q #2: Which of the two heuristics of the 8-puzzle is better?

(A) The Manhattan distance heuristic dominates
the Misplaced tile heuristic.

(B) The Misplaced tile heuristic dominates
the Manhattan distance heuristic.

(C) Neither dominates the other one.
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Q: Which Heuristic of 8-puzzle is Better?

Q #2: Which of the two heuristics of the 8-puzzle is better?

(A) The Manhattan distance heuristic dominates
the Misplaced tile heuristic.

(B) The Misplaced tile heuristic dominates
the Manhattan distance heuristic.

(C) Neither dominates the other one.

→ If a tile is out of place, Misplaced tile will +1. Manhattan
distance will add at least 1 and maybe more. So Manhattan
distance heuristic always gives a larger value.
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Cycle Pruning

▶ What is cycle pruning?

Whenever we realize that we are following a cycle, we should
stop expanding the path.

▶ Why do we want to perform cycle pruning?

Cycles may cause an algorithm to not terminate, e.g. DFS.
Exploring a cycle is a waste of time since it cannot be part of
a solution.
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Search w/ Cycle Pruning

▶ How do we perform cycle pruning?

Algorithm 1 Search w/ Cycle Pruning

1: ...
2: for every neighbour n of nk do
3: if n ̸∈ ⟨n0, . . . , nk⟩ then
4: add ⟨n0, . . . , nk, n⟩ to frontier;

5: ...

▶ What is the complexity of cycle pruning for DFS and BFS?

Time complexity: linear to the path length.
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▶ How do we perform cycle pruning?

Algorithm 3 Search w/ Cycle Pruning
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Search w/ Cycle Pruning

▶ How do we perform cycle pruning?

Algorithm 4 Search w/ Cycle Pruning

1: ...
2: for every neighbour n of nk do
3: if n ̸∈ ⟨n0, . . . , nk⟩ then
4: add ⟨n0, . . . , nk, n⟩ to frontier;

5: ...

▶ What is the complexity of cycle pruning for DFS and BFS?

Time complexity: linear to the path length.
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Multiple-Path Pruning

▶ Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard
other paths to the same node.

▶ What is the relationship between cycle pruning
and multi-path pruning?

Cycle pruning is a special case of multi-path pruning.
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Cycle pruning is a special case of multi-path pruning.
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Search w/ Multi-Path Pruning

How do we perform multi-path pruning?

Algorithm 5 Search w/ Multi-Path Pruning

1: procedure Search(Graph, Start node s, Goal test goal(n))
2: frontier := {⟨s⟩};
3: explored := {};
4: while frontier is not empty do
5: select and remove path ⟨n0, . . . , nk⟩ from frontier;
6: if nk ̸∈ explored then
7: add nk to explored
8: if goal(nk) then
9: return ⟨n0, . . . , nk⟩;

10: for every neighbour n of nk do
11: add ⟨n0, . . . , nk, n⟩ to frontier;

12: return no solution
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Search w/ Multi-Path Pruning

There are some caveats:

▶ Node will be added to the ‘explored’ set once it’s explored

▶ The longer paths leading to ‘explored’ set will still be added
to frontier, they are just not explored.

▶ It saves computation but increases space consumption.

CS 486/686: Intro to AI Lecturer: Wenhu Chen 65 / 84



A problem with multi-path pruning

▶ Multi-path pruning says that we keep the first path to a node
and discard the rest.

▶ What if the first path to a node is not the least-cost path?

▶ Can multi-path pruning cause a search algorithm to
fail to find the optimal solution?
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Lowest-cost-first search w/ multi-path pruning

Can Lowest-Cost-First Search with multi-path pruning
discard the optimal solution?

(A) Yes, it is possible.

(B) No, it is not possible.
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Lowest-cost-first search w/ multi-path pruning

Can Lowest-Cost-First Search with multi-path pruning
discard the optimal solution?

(A) Yes, it is possible.

(B) No, it is not possible.

→ (B) No, it is not possible.
LCFS always finds the least-cost path first.
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A* search w/ multi-path pruning

Can A* search with an admissible heuristic and multi-path pruning
discard the optimal solution?

(A) Yes, it is possible.

(B) No, it is not possible.
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A* search w/ multi-path pruning

Can A* search with an admissible heuristic and multi-path pruning
discard the optimal solution?

(A) Yes, it is possible.

(B) No, it is not possible.

→ (A) Yes, it is possible.

When we select a path to a node for the first time,
this path may not be the least-cost path to the node.

A* with multi-path pruning is not optimal.
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A* search w/ multi-path pruning
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A* search w/ multi-path pruning

Frontier: (S) → (SB: 4, SC: 21, SD: 22)
Explored: (S)
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A* search w/ multi-path pruning

Frontier: (SB: 4, SC: 21, SD: 22) → (SBE: 9, SC: 21, SD: 22)
Explored: (S, B)
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A* search w/ multi-path pruning

Frontier: (SBE: 9, SC: 21, SD: 22) → (SC: 21, SD: 22, SBEG: 25)
Explored: (S, B, E)
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A* search w/ multi-path pruning

Frontier: (SBE: 9, SC: 21, SD: 22) → (SCE: 7, SD: 22, SBEG: 25)
Explored: (S, B, E)

S B

C

D

E G

h(C) = 20

h(B) = 2

h(D) = 20

h(E) = 4 h(G) = 0

1

2

2

3 20

2

CS 486/686: Intro to AI Lecturer: Wenhu Chen 75 / 84



A* search w/ multi-path pruning

Frontier: (SCE: 7, SD: 22, SBEG: 25) → (SD: 22, SBEG: 25)
Explored: (S, B, E)
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A* search w/ multi-path pruning

Frontier: (SD: 22, SBEG: 25) → (SDE: 8, SBEG: 25)
Explored: (S, B, E)
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A* search w/ multi-path pruning

Frontier: (SDE: 8, SBEG: 25) → (SBEG: 25)
Explored: (S, B, E)
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A* search w/ multi-path pruning

Frontier: (SBEG: 25) → ()
Explored: (S, B, E, G)
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Finding optimal solution w/ multi-path pruning

What if a subsequent path to n is shorter than the first path
found?

▶ Remove all paths from the frontier that use the longer path.

▶ Change the initial segment of the paths on the frontier
to use the shorter path.

▶ Make sure that we find the least-cost path to a node first.
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When the does multi-path pruning not work?

Assuming we have a frontier (s → n, · · · , s → n′), and we are
exploring node n.

▶ If there exists another path through n′ to n with lower f-value.

▶ 1) we have h(n) + cost(n) > h(n) + cost(n′) + cost(n′, n),
e.g. cost(n)− cost(n′) > cost(n′, n)

▶ 2) node n is already explored, so
h(n) + cost(n) ≤ h(n′) + cost(n′)

▶ Combine these two, we have
h(n′)− h(n) ≥ cost(n)− cost(n′) > cost(n′, n)

▶ Such scenario only happens when there exists two nodes n
and n′ with h(n′)− h(n) > cost(n′, n).
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Consistent Heuristic

▶ An admissible heuristic requires that:
For any node m and any goal node g,

h(m)− h(g) ≤ cost(m, g).

▶ To ensure that A* with multi-path pruning is optimal,
we need a consistent heuristic function: For any two nodes m
and n,

h(m)− h(n) ≤ cost(m,n).

▶ A consistent heuristic satisfies the monotone restriction:
For any edge from m to n,

h(m)− h(n) ≤ cost(m,n).
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Constructing Consistent Heuristics

▶ Most admissible heuristic functions are consistent.

▶ It’s challenging to come up with a heuristic function that is
admissible but not consistent.
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Summary of Search Strategies

Strategy Frontier Selection Halts? Space Time

Depth-first Last node added No Linear Exp

Breadth-first First node added Yes Exp Exp

Lowest-cost-first min cost(n) Yes Exp Exp

Greedy Best-first min h(n) No Exp Exp

A* min cost(n) + h(n) Yes Exp Exp
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