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Learning goals

▶ Formulate a real-world problem as a search problem.

▶ Trace the execution of and implement uninformed search
algorithms (Breadth-first search, Depth-first search,
Iterative-deepening search).

▶ Given an uninformed search algorithm, explain its space
complexity, time complexity, and whether it has any
guarantees on the quality of the solution found.

▶ Given a scenario, explain whether and why it is appropriate to
use an uninformed algorithm.
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Example: Route Planning
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Traveling Salesperson Problem

What is the shortest path that starts at city A, visits each city only
once, and returns to A?

Applications: DNA sequencing. School bus routes. Parcel pickups.

See this article for a recent breakthrough.
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https://www.quantamagazine.org/computer-scientists-break-traveling-salesperson-record-20201008/


8-puzzle

Initial State

5 3

8 7 6

2 4 1

Goal State

1 2 3

4 5 6

7 8
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N -Queens Problem

The n-queens problem: Place n queens on an n× n board so that
no pair of queens attacks each other.

http://yue-guo.com/wp-content/uploads/2019/02/N_queen.png
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Motivation for Search Algorithms

▶ Problems that involve sequential decision making

▶ Last resort: No efficient Algorithm (e.g. solve a linear
equation)

▶ Easy to verify a solution, but to find a solution

▶ NP-hard problem

▶ Solve complex problems in Real-Life, trial-and-error

▶ On a computer, a search algorithm will explore all paths
systematically
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Graph Searching

Any search problem can be visualized as a graph, where each node
represents a state.

▶ S is the initial state, G is the goal state

▶ Search == Traversing the graph to find a path from S to G
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A Search Problem

Definition (Search Problem)

A search problem is defined by:
▶ A set of states
▶ An initial state
▶ Goal states or a goal test

▶ a boolean function which tells us whether a given state is a
goal state

▶ A successor (neighbour) function
▶ an action which takes us from one state to other states

▶ (Optionally) a cost associated with each action

A solution to this problem is a path from the start state
to a goal state (optionally with the smallest total cost).
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Example: 8-Puzzle

Initial State

5 3

8 7 6

2 4 1

Goal State

1 2 3

4 5 6

7 8
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Formulating 8-Puzzle as a Search Problem

▶ State:

▶ Initial state:

▶ Goal states:

▶ Successor function:

▶ Cost function:
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Formulating 8-Puzzle as a Search Problem

▶ State: x00x01x02, x10x11x12, x20x21x22
xij is the number in row i and column j. i, j ∈ {0, 1, 2}.
xij ∈ {0, . . . , 8}. xij = 0 denotes the empty square.

▶ Initial state: 530, 876, 241.

▶ Goal states: 123, 456, 780.

▶ Successor function: Consider the empty square as a tile. State
B is a successor of state A if and only if we can convert A to B
by moving the empty tile up, down, left, or right by one step.

▶ Cost function: Each move has a cost of 1.
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Q: The successor function

Q: Which of the following is a successor of 530, 876, 241?

(A) 350, 876, 241
(B) 536, 870, 241
(C) 537, 806, 241
(D) 538, 076, 241

Initial State

5 3

8 7 6

2 4 1

→ (B) is correct.
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Choosing among multiple formulations

▶ The state definition determines the nodes.
The successor function determines the directed edges.

▶ Ideally, we want to minimize the number of nodes and edges
in the graph.

▶ Choosing a state definition may make it easier or harder to
implement the successor function.

An alternative state definition for the 8-puzzle:
A state is defined by 8 coordinates.
(xi, yi) is the coordinates for tile i where 1 ≤ i ≤ 8.
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Choosing among multiple formulations

Initial State

5 3

8 7 6

2 4 1

▶ State: (0, 2), (2, 2), (2, 0), (0, 1), (2, 1), (0, 0), (1, 2), (1, 1), (2,
0)

▶ Space Consumption will increase by 2x.

▶ Successor Function: Swap the 0 tile coordinate with another
neighbor tile
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The Search Graph

▶ normally no duplicate of nodes

▶ label each edge with its cost

▶ this lecture will assume each edge has an equal cost of 1
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Searching for a Solution

→ A formulation gives us enough info to generate the search
graph. However, we often don’t generate the search graph
explicitly and store it. It may be large or infinite and it is not
necessary.

Instead, we will generate a search tree as we explore the search
graph.

▶ Construct the search tree as we explore paths incrementally
from the start node.

▶ Maintain a frontier of paths from the start node.

▶ Frontier contains all the paths available for expansion.

▶ Expanding a path: removing it from the frontier, generating
all the neighbors of the last node, and adding the paths
ending with each neighbor to the frontier.
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The Search Tree

frontier

explored nodes

unexplored nodes

start
node
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Generic Search Algorithm

Algorithm 1 A Generic Search Algorithm

1: procedure Search(Graph, Start node s, Goal test goal(n))

2: frontier := {⟨s⟩}
3: while frontier is not empty do
4: select and remove path ⟨n0, . . . , nk⟩ from frontier
5: if goal(nk) then
6: return ⟨n0, . . . , nk⟩
7: for every neighbour n of nk do
8: add ⟨n0, . . . , nk, n⟩ to frontier

9: return no solution
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Generic Search Algorithm
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Generic Search Algorithm
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Generic Search Algorithm
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Generic Search Algorithm

Algorithm 7 A Generic Search Algorithm

1: procedure Search(Graph, Start node s, Goal test goal(n))
2: frontier := {⟨s⟩}
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Depth-First Search

▶ Treats the frontier as a stack (LIFO).

▶ Expands the last/most recent node added to the frontier.

→ Search one path to completion before trying another path.

Backtracks to another alternative after it has explored all the paths
from the first alternative.
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Trace DFS on a Search Graph

▶ Trace DFS on the search graph below, with S as the initial
state.

▶ Add nodes to the frontier in alphabetical order.
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Trace DFS on a Search Graph

Frontier: (S):

S
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Trace DFS on a Search Graph

Frontier: (S) → (D, E, P):

S
1

D E P
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Trace DFS on a Search Graph

Frontier: (D, E, P) → (D, E, Q):

S
1

D E P
2

Q

2
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Trace DFS on a Search Graph

Frontier: (D, E, Q) → (D, E):

S
1

D E P
2

Q
3
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Trace DFS on a Search Graph

Frontier: (D, E) → (D, H, R):

S
1

D E P
2

Q
3

H R

4

CS 486/686: Intro to AI Lecturer: Wenhu Chen 32 / 81



Trace DFS on a Search Graph

Frontier: (D, H, R) → (D, H, F):

S
1

D E P
2

Q
3

H R

4

5

F
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Trace DFS on a Search Graph

Frontier: (D, H, F) → (D, H, C, G):

S
1

D E P
2

Q
3

H R

4

5

F

C

6

G
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Trace DFS on a Search Graph

Frontier: (D, H, C, G) → (D, H, C):

S
1

D E
4

P
2

H R
5

Q
3

F
6

C G
7

It takes 7 steps to reach the goal state.
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Properties of DFS

Properties

▶ Space Complexity: size of frontier in worst case

▶ Time Complexity: # nodes visited in worst case

▶ Completeness: does it find a solution when one exists?

▶ Optimality: if solution found, is it the one with the least cost?

Useful Quantities

▶ b is the branching factor.

▶ m is the maximum depth of the search tree.

▶ d is the depth of the shallowest goal node.
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Properties of DFS - Space Complexity

Space Complexity

▶ O(bm)

b is the branching factor.
m is the max depth of the search tree.

▶ Linear in m

▶ Remembers m nodes on current path and
at most b siblings for each node.
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Properties of DFS - Time Complexity

Time Complexity

▶ O(bm)

▶ Exponential in m.

▶ Visit the entire search tree in the worst case.
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Properties of DFS - Completeness

Is DFS guaranteed to find a solution if a solution exists?

▶ No.

▶ Will get stuck in an infinite path.

▶ An infinite path may or may not be a cycle.
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Properties of DFS - Completeness

Is DFS guaranteed to find a solution if a solution exists?

S

H I

J

G

▶ Solution G exists

▶ Loop: H → I → J → H, cannot find the solution
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Properties of DFS - Optimality

Is DFS guaranteed to return an optimal solution if it terminates?

▶ No.

▶ Pays no attention to the costs and
makes no guarantee on the solution’s quality.
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Properties of DFS - Optimality

S
1

D E
4

P
2

H J
5

Q
3

F
6

C G
7

CS 486/686: Intro to AI Lecturer: Wenhu Chen 42 / 81



When should we use DFS?

DFS is useful when:

▶ Space is restricted.

▶ Many solutions exist, perhaps with long paths.

DFS is a poor method when:

▶ There are infinite paths.

▶ Solutions are shallow.

▶ There are multiple paths to a node.
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Breadth-First Search

▶ Treats the frontier as a queue (FIFO).

▶ Expands the first/oldest node added to the frontier.

→ Select a path with the fewest arcs at each step.
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Trace BFS on a Search Graph

▶ Trace the BFS algorithm

S

D

P

E

C

B

Q

H

J

G

CS 486/686: Intro to AI Lecturer: Wenhu Chen 46 / 81



Trace BFS on a Search Graph

Frontier: (S)

S
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Trace BFS on a Search Graph

Frontier: (S) → (D, E, P)

S
1

D E P

CS 486/686: Intro to AI Lecturer: Wenhu Chen 48 / 81



Trace BFS on a Search Graph

Frontier: (D, E, P) → (B, C, H, J, Q)

S
1

D E P
2 3 4

B C H J Q
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Trace BFS on a Search Graph

Frontier: (B, C, H, J, Q) → (P, B, G)

S
1

D
2

E
3

P
4

B
5

C
6

H
7

J
8

Q
9

P B G

CS 486/686: Intro to AI Lecturer: Wenhu Chen 50 / 81



Trace BFS on a Search Graph

Frontier: (P, B, G) → (G, Q, P)

S
1

D
2

E
3

P
4

B
5

C
6

H
7

J
8

Q
9

P
10

B

11

Q P

G

12

It takes 12 steps to reach the goal state. More time than DFS!
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Properties of BFS - Space Complexity

Space Complexity

▶ O(bd)

b is the branching factor.
d is the depth of the shallowest goal node.

▶ Exponential in d.

▶ Must visit the top d levels.
The size of the frontier is dominated by the size of level d.
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Properties of BFS - Time Complexity

Time Complexity

▶ O(bd)

▶ Exponential in d.

▶ Visit the entire search tree in the worst case.
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Properties of BFS - Completeness

Is BFS guaranteed to find a solution if a solution exists?

▶ Yes.

▶ Explores the tree level by level until it finds a goal.
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Properties of BFS - Optimality

Is BFS guaranteed to return an optimal solution if it terminates?

▶ Yes and No.

▶ Guaranteed to find the shallowest goal node. It is the
lowest-cost solution if all edge has the same cost.
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When should we use BFS?

BFS is useful when:

▶ Space is not a concern.

▶ Want a solution with the fewest arcs.

BFS is a poor method when:

▶ All the solutions are deep in the tree.

▶ The problem is large and the graph is dynamically generated.
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Q: BFS v.s. DFS

Q #1: Suppose that memory is very limited.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.
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Q: BFS v.s. DFS

Q #1: Suppose that memory is very limited.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.

→ (B) DFS is better.
BFS requires exponential memory.
DFS requires linear memory.
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Q: BFS v.s. DFS

Q #2: Suppose that all the solutions are deep in the search tree.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.
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Q: BFS v.s. DFS

Q #2: Suppose that all the solutions are deep in the search tree.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.

→ (B) DFS is better.
DFS will explore long paths first and find a solution faster.
BFS will explore shallow nodes first and will likely require more
time to find a solution.
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Q: BFS v.s. DFS

Q #3: Suppose that the search graph contains cycles.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.
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Q: BFS v.s. DFS

Q #3: Suppose that the search graph contains cycles.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.

→ (A) BFS is better.
DFS may get stuck in cycles.
BFS has no problem with cycles.
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Q: BFS v.s. DFS

Q #4: Suppose that the branching factor is large/infinite.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.
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Q: BFS v.s. DFS

Q #4: Suppose that the branching factor is large/infinite.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.

→ (B) DFS is better.
BFS will be slow for large b and will not terminate with infinite b.
DFS requires linear memory.
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Q: BFS v.s. DFS

Q #5: Suppose that we must find the shallowest goal node.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.
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Q: BFS v.s. DFS

Q #5: Suppose that we must find the shallowest goal node.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.

→ (A) BFS is better.
BFS is guaranteed to find the shallowest goal node.
DFS will likely find a deep goal node first.
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Q: BFS v.s. DFS

Q #6: Suppose that all the solutions are very shallow.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.
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Q: BFS v.s. DFS

Q #6: Suppose that all the solutions are very shallow.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.

(B) DFS is a better choice.

(C) Both are good choices.

(D) Neither is a good choice.

→ (A) BFS is better.
BFS is guaranteed to find the shallowest goal node.
DFS will likely find a deep goal node first.
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Learning Goals

Applications of Search

Formulating a Search Problem

Generic Search Algorithm

Uninformed Search Algorithms

Depth-First Search

Breadth-First Search

Iterative-Deepening Search

Learning Goals
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Combining The Best of BFS and DFS

Can we create a search algorithm
that combines the best of BFS and DFS?

BFS DFS
O(bd) exponential space O(bm) linear space

Guaranteed to find May get stuck
a solution if one exists on infinite paths

Can we bring the best of two together?

Iterative-Deepening Search:
For every depth limit,
perform depth-first search until the depth limit is reached.
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Trace IDS on a Search Graph

▶ Trace IDS on the search graph below.

▶ Add nodes to the frontier in alphabetical order.

S

D

P

E

C

B

Q

H

J

G
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Trace IDS on a Search Graph

Depth: 1

S
1
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Trace IDS on a Search Graph

Depth: 2

S
1

D E P
234
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Trace IDS on a Search Graph

Depth: 3

S
1

D E P
247

B
9

C
8

H
6

J
5

Q
3
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Trace IDS on a Search Graph

Depth: 4

S
1

P
2

Q
3

G
4

CS 486/686: Intro to AI Lecturer: Wenhu Chen 75 / 81



Properties of IDS - Space Complexity

Space Complexity

▶ O(bd)

b is the branching factor.
d is the depth of the shallowest goal node.

▶ Linear in d.
Similar to DFS.

▶ Executes DFS for each depth limit.
Guaranteed to terminate at depth d.
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Properties of IDS - Time Complexity

Time Complexity

▶ O(bd)

▶ Exponential in d.
Same as BFS.

▶ Visits all the nodes on the top d levels in the worst case.
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Properties of IDS - Completeness

Is IDS guaranteed to find a solution if a solution exists?

▶ Yes.
Same as BFS.

▶ Explores the tree level by level until it finds a goal.
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Properties of IDS - Optimality

Is IDS guaranteed to return an optimal solution if it terminates?

▶ Yes and No.

▶ Guaranteed to find the shallowest goal node. It’s the
lowest-cost solution if all edge has the same cost.
Same as BFS.
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A Summary of IDS Properties

▶ Space Complexity:

O(bd), linear in d. Similar to DFS.

▶ Time Complexity:

O(bd), exponential in d. Same as BFS.

▶ Completeness:

Yes. Same as BFS.

▶ Optimality:

No, but guaranteed to find the shallowest goal node.
Same as BFS.
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Learning goals

▶ Formulate a real-world problem as a search problem.

▶ Trace the execution of and implement uninformed search
algorithms (Breadth-first search, Depth-first search,
Iterative-deepening search).

▶ Given an uninformed search algorithm, explain its space
complexity, time complexity, and whether it has any
guarantees on the quality of the solution found.

▶ Given a scenario, explain whether and why it is appropriate to
use an uninformed algorithm.
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