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Outline
§ Stochastic Games 

§ Multi-agent Reinforcement Learning (MARL) 

§ Opponent Modelling: Fictitious Play 

§ Cooperative Stochastic Games 

§ Joint Q learning 

§ Competitive Stochastic Games (Zero-sum games) 

§ Minimax Q learning 
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Multi-agent Reinforcement Learning 

3

Multi-agent Games + Sequential decision making

Newer field with unique challenges and opportunities
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Stochastic Games 
§ (Simultaneously moving) Stochastic Game (𝑁-agent MDP)

§ 𝑁: Number of agents 
§ 𝑆: Shared state space  𝑠 ∈ 𝑆
§ 𝐴!: Action space of agent 𝑗	

§ ⟨𝑎!, 𝑎", … , 𝑎#⟩ ∈ 𝐴!×𝐴"×⋯×𝐴#

§ 𝑅!: Reward function for agent 𝑗:	 𝑅!(𝑠, 𝑎", … , 𝑎#) = ∑$! 𝑟
! 𝑃𝑟(𝑟!|𝑠, 𝑎", … , 𝑎#)

§ Cooperative game: same reward for all agents
§ Competitive game: ∑$𝑅$(𝑠, 𝑎!, … , 𝑎#) = 0

§ 𝑇: Transition function:      𝑃𝑟(𝑠%|𝑠, 𝑎", … , 𝑎#)
§ 𝛾: Discount factor: 0 ≤ 𝛾 ≤ 1
§ Horizon (i.e., # of time steps): h

§ Policy (strategy) for agent 𝑖:       𝜋!: 𝑆 → Ω(𝐴!)
§ Goal: Find optimal policy such that 𝝅∗ = {𝜋#∗, … , 𝜋$∗ },

 where 𝜋!∗ = arg𝑚𝑎𝑥
%%

∑
&'(

)
𝛾&𝔼𝝅[𝑟&!(𝑠, 𝒂)], where 𝒂 ≜ {𝑎#, … , 𝑎$} and  𝝅 ≜ {𝜋#, … , 𝜋$}
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Unknown models
and unknown policies
of other agents

CS486/686 Spring 2024 - Lecture 16 - Pascal Poupart



Playing a stochastic game
§ Players choose their actions at the same time 

§ No communication with other agents 
§ No observation of other player’s actions

§ Each player chooses a strategy 𝜋! which is a mapping from states to actions and can be either
§ Mixed strategy: Distribution over actions for at least one state
§ Pure strategy: One action with prob 100% for all states

§ At each state, all agents face a stage game (normal form game) with the Q values of the current 
state and joint action of each player being the utility for that player

§ The stochastic game can be thought of as a repeated normal form game with a state 
representation
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Solution Concept
§ In MARL, a solution often corresponds to some equilibrium of the stochastic game 

§ The most common solution concept is the Nash equilibrium 

§ Let us define a value function for the multi-agent setting

                   𝑉𝝅
:(𝑠) ≜ ∑

;<=

>
𝛾;𝔼𝝅[𝑟;

:|𝑠? = 𝑠,𝝅]

§ Nash equilibrium under the stochastic game satisfies 

𝑉
@∗
+,𝝅∗

,+
: 𝑠 ≥ 𝑉

@+,𝝅∗
,+

: 𝑠 .	 ∀𝑠 ∈ 𝑆; ∀𝑗; ∀𝜋: ≠ 𝜋∗
: 
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Independent learning
§ Naive approach: Apply the single agent Q-learning directly 
§ Each agent would update its Q-values using the Bellman update: 

𝑄:(𝑠, 𝑎:) ← 𝑄:(𝑠, 𝑎:) + 𝛼(𝑟: + 𝛾𝑚𝑎𝑥
B"#

𝑄:(𝑠C, 𝑎C:) − 𝑄:(𝑠, 𝑎:)) 
§ Each agent assumes that the other agent(s) are part of the environment

§ Advantage: Simple approach, easy to apply 
§ Disadvantages: 

§ Might not work well against opponents playing complex strategies
§ Non-stationary transition and reward models 
§ No convergence guarantees 
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Opponent Modelling 
§ Note that an agent’s response requires knowledge of other agent’s actions

§ This is a simultaneously move game where each agent does not know what the other agents will do 

§ So each agent should maintain a belief over other agents actions at current state 

§ Maintaining a belief over the actions of other agents is called opponent modelling 

§ Techniques for Opponent Modelling: 

§ Fictitious Play 

§ Gradient Based Methods 

§ Solving Unique Equilibrium (for each stage game) 

§ Bayesian Approaches
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Fictitious Play 

§ Each agent assumes that all opponents are playing a stationary mixed strategy

§ Agents maintain a count of number of times another agent performs an action 

𝑛;D(𝑠, 𝑎:) ← 1 + 𝑛;EFD (𝑠, 𝑎:), ∀𝑗, ∀𝑖
§ Agents update their belief about this strategy at each state according to

𝑃𝑟;D 𝑎: 𝑠 = G-
.(H,B+)

∑
/0+

G-
.(H,B0+)

§ Agents calculate best responses according to this belief 
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Joint Q learning 

10

JointQlearning(𝑠, 𝑄)
    Repeat
       Repeat for each agent 𝑖
         Select and execute 𝑎D
 Observe 𝑠C, 𝑟D and 𝒂ED, where 𝒂ED = {𝑎F, … , 𝑎DEF, 𝑎DIF, … , 𝑎J}

Update counts: 𝑛 𝑠, 𝒂 ← 𝑛(𝑠, 𝒂) + 1, 𝑛D 𝑠, 𝑎: ← 1 + 𝑛D(𝑠, 𝑎:), ∀𝑗

Sample others’ actions: 8𝑎C: ∼ 𝑃𝑟D 𝑎:C 𝑠C = G$ H",B"#

∑%" G
$ H",B"#

	∀𝑗 ≠ 𝑖

 Learning rate: 𝛼 ← 1/𝑛(𝑠, 𝒂)
 Update Q-value: 
                           𝑄! 𝑠, 𝑎!, 𝒂1𝒊 ← 𝑄!(𝑠, 𝑎!, 𝒂1!) + 𝛼(𝑟! + 𝛾𝑚𝑎𝑥

3&%
𝑄!(𝑠4, 𝑎4!, C𝑎4#, … , C𝑎4$) − 𝑄!(𝑠, 𝑎!, 𝒂1!)) 

 𝑠 ← 𝑠C
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Convergence of Tabular Joint Q learning 
§ If the game is finite (finite agents and finite number of strategies for each agent), then fictitious 

play will converge to true response of opponent(s) in the limit in self-play

§ Self-play: All agents learn using the same algorithm 

§ Joint Q-learning converges to Nash Q-values in a cooperative stochastic game if

§ Every state is visited infinitely often (e.g., epsilon greedy or Boltzmann exploration)

§ The learning rate 𝛼 is decreased fast enough, but not too fast (sufficient conditions for 𝛼):

(1) ∑
1
𝛼1 → ∞ (2) ∑

1
(𝛼1)2 < ∞

§ In cooperative stochastic games, the Nash Q-values are unique (guaranteed unique equilibrium) 
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Cooperative Stochastic Games
• Cooperative stochastic game: same reward function for all agents
• Equilibrium for cooperative stochastic games is the Pareto dominating (Nash) equilibrium

• Nash equilibrium: ∀𝑖, 𝑎& , 𝑅& 𝑎&∗, 𝑎(&∗ ≥ 𝑅& 𝑎& , 𝑎(&∗

• Pareto dominating: ∀𝑖	𝑅& 𝑎∗ ≥ 𝑅& 𝑎)∗

• There exists a unique Pareto dominating (Nash) equilibrium

12

2,2 0,0

0,0 1,1

Bob 

Alice

Baseball

Soccer 

Baseball Soccer 
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Competitive Stochastic Games
• The equilibrium in the case of competitive stochastic games is the min-max Nash 

equilibrium 

• Each stage game of this stochastic game faces a zero-sum game

• There exists a unique min-max (Nash) equilibrium in utilities

• Optimal min-max value function 

𝑉∗
)(𝑠) = 𝑚𝑎𝑥

*3
𝑚𝑖𝑛
*43

[𝑟)(𝑠, 𝑎) , 𝑎+)) + 𝛾∑
,5
𝑃𝑟(𝑠-|𝑠, 𝑎) , 𝑎+))𝑉∗

)(𝑠-)] 

• For a competitive stochastic game there exists a unique min-max value function
and hence a unique min-max Q-function
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Learning in competitive stochastic games
§ Algorithm: Minimax Q-Learning

§ Q-values for each agent 𝑗 are over joint actions: 𝑄"(𝑠, 𝑎" , 𝑎#")

§ 𝑠 = state 

§ 𝑎" = action 

§ 𝑎#" = opponent action 

§ Instead of playing the best 𝑄"(𝑠, 𝑎" , 𝑎#") play min-max Q

𝑄"(𝑠, 𝑎" , 𝑎#") ← (1 − 𝛼)𝑄"(𝑠, 𝑎" , 𝑎#") + 𝛼(𝑟" + 𝛾𝑉"(𝑠$)) 

𝑉"(𝑠$) ← 𝑚𝑎𝑥
%#

𝑚𝑖𝑛
%*#

𝑄"(𝑠$, 𝑎" , 𝑎#")

14CS486/686 Spring 2024 - Lecture 16 - Pascal Poupart



Minimax Q learning 

15

Minimax Qlearning
Repeat
  Repeat for each agent 

        Select and execute action 𝑎)
Observe 𝑠C, 𝑎E: and 𝑟

    Update counts: 𝑛 𝑠, 𝒂 ← 𝑛(𝑠, 𝒂) + 1
Learning rate: 𝛼 ← F

G(H,𝒂)
Update Q-value: 

                  𝑄∗
" 𝑠, 𝑎", 𝑎#" ← (1 − 𝛼)𝑄∗

"(𝑠, 𝑎", 𝑎#") + 𝛼(𝑟" + 𝛾𝑚𝑎𝑥
%"#

𝑚𝑖𝑛
%"*#

𝑄∗
"(𝑠$, 𝑎$", 𝑎$#")))

𝑠 ← 𝑠C
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Convergence of Minimax Tabular Q learning 
§ Convergence in self-play

§ Minimax Q-learning converges to min-max equilibrium in competitive game if:

§ Every state is visited infinitely often (e.g. epsilon-greedy or Boltzmann exploration)

§ The learning rate 𝛼 is decreased fast enough, but not too fast 
(sufficient conditions for 𝛼):  

            (1) ∑
G
𝛼G → ∞ (2) ∑

G
(𝛼G)L < ∞

§ In a competitive stochastic games, the Nash Q-values are unique (guaranteed unique min-max 
equilibrium point in utilities) 
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Opponent Modelling 
§ In a competitive game rational agents always take a min-max action
§ There is no requirement for a separate opponent modelling strategy in self-play

§ However: 
§ Other agents could use different algorithms 
§ Computing the min-max action can be time consuming 

§ Alternative: Fictitious play 
§ Fact: Fictitious play also converges in competitive zero-sum games
§ Fact: Fictitious play converges to the min-max action in self-play
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(Mixed) Stochastic Games/ General-sum Stochastic Game 
§ Rewards for each agent can be arbitrary

§ Rewards are not the same for all agent (i.e., not cooperative)

§ They do not sum to 0 (i.e., not entirely competitive)

§ Objective for agent: Find the optimal policy for best response

§ What should be the solution concept?

§ There could be multiple Nash equilibria

§ Nash theorem: at-least one mixed strategy Nash equilibrium exists

§ Area of research

§ Various solution concepts

§ Various forms of opponent modeling
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