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Outline

Stochastic Games

Multi-agent Reinforcement Learning (MARL)

Opponent Modelling: Fictitious Play

Cooperative Stochastic Games

= Joint Q learning

Competitive Stochastic Games (Zero-sum games)

= Minimax Q learning

W UNIVERSITY OF
CS486/686 Spring 2024 - Lecture 16 - Pascal Poupart 2 @ WATERLOO



Multi-agent Reinforcement Learning

Multi-agent Games + Sequential decision making

Environment

A
State / Observation 1, State / Observation 2, State / Observation N,
Reward 1 Reward 2 Joint Action Reward N
Action 1 Action 2 Action N ‘
Y \ 2 \4
Agent 1 ‘ . Agent2 | = = = - Agent N

Newer field with unique challenges and opportunities
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Stochastic Games

= (Simultaneously moving) Stochastic Game (v-agent MDP)

= N: Number of agents

= S: Shared state space s € S

= AJ: Action space of agent j
= (al,a?,...,a") € ATxA%?x ---xAN

» R/: Reward function for agent j: R/(s,a’,..,a") =Y ;r/ Pr(r/|s,a’, ..., a")
= Cooperative game: same reward for all agents
» Competitive game: }; R/ (s, a’, ...,a") = 0

« T: Transition function:  Pr(s’|s,al, ..., a")

= y: Discount factor: 0 <y <1

= Horizon (i.e., # of time steps): h

—

Unknown models
== and unknown policies
of other agents

« Policy (strategy) for agenti: S — Q(4Y)
= Goal: Find optimal policy such that n* = {n], ..., my},
h

where nj = argmax Y, V E,[ri(s,a)], where a 2 {a?, ...,a’}and m 2 {#%, .., 7N}
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Playing a stochastic game

Players choose their actions at the same time
= No communication with other agents
= No observation of other player’s actions

Each player chooses a strategy " which is a mapping from states to actions and can be either
= Mixed strategy: Distribution over actions for at least one state
= Pure strategy: One action with prob 100% for all states

At each state, all agents face a stage game (normal form game) with the Q values of the current
state and joint action of each player being the utility for that player

The stochastic game can be thought of as a repeated normal form game with a state
representation
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Solution Concept

In MARL, a solution often corresponds to some equilibrium of the stochastic game

The most common solution concept is the Nash equilibrium

Let us define a value function for the multi-agent setting

V() £ T y'Enlrls, = 57

Nash equilibrium under the stochastic game satisfies

V. )=V _.(s). Vs€S;Vj;vnl =
(ulr?) 2 Vs
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Independent learning

Naive approach: Apply the single agent Q-learning directly

Each agent would update its Q-values using the Bellman update:
0/(s,a)) « Q/(s,@)) + a(r/ +ymaxQI(s',a”) — QU (s,a)))
al

Each agent assumes that the other agent(s) are part of the environment

Advantage: Simple approach, easy to apply

Disadvantages:
= Might not work well against opponents playing complex strategies
= Non-stationary transition and reward models

= No convergence guarantees
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Opponent Modelling

Note that an agent’s response requires knowledge of other agent’s actions

This is a simultaneously move game where each agent does not know what the other agents will do

So each agent should maintain a belief over other agents actions at current state

Maintaining a belief over the actions of other agents is called opponent modelling

Techniques for Opponent Modelling:
= Fictitious Play
= Gradient Based Methods
= Solving Unique Equilibrium (for each stage game)

= Bayesian Approaches
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Fictitious Play

Each agent assumes that all opponents are playing a stationary mixed strategy

Agents maintain a count of number of times another agent performs an action

ni(s,a’) « 1+nt_,(s,a’), vj, Vi

Agents update their belief about this strategy at each state according to

ng(s,a’)
i .
Za’j nt(s,a’J)

Agents calculate best responses according to this belief

Pri(alls) =
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Joint 0 learning

JointQlearning(s, Q)
Repeat
Repeat for each agent i
Select and execute a'
Observe s’, r* and a™t, where a™* = {d?, ..., a' %, a'*?, ..., aV}
Update counts: n(s,a) « n(s,a) + 1, ni(s,a’) « 1+ ni(s,a’), vj
nt(s’,a'’)
%1 ni(s’,a')

i—1
)

Sample others’ actions: @7 ~ Pr'(aj|s’) = Vj # i
Learning rate: a « 1/n(s, a)
Update Q-value:
Q'(s,al,a™) « Qi(s,al,a™ ) + a(rt + qu_in(s’, a't,a't,...,a"™) — Qi(s,at,a™))
a l

s« s’
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Convergence of Tabular Joint ( learning

= If the game is finite (finite agents and finite number of strategies for each agent), then fictitious
play will converge to true response of opponent(s) in the limit in self-play

= Self-play: All agents learn using the same algorithm
= Joint Q-learning converges to Nash Q-values in a cooperative stochastic game if

= Every state is visited infinitely often (e.g., epsilon greedy or Boltzmann exploration)

= The learning rate « is decreased fast enough, but not too fast (sufficient conditions for «):

(D) Ya, >0 (2)¥(ap)? <

= In cooperative stochastic games, the Nash Q-values are unique (guaranteed unique equilibrium)
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Cooperative Stochastic Games

« Cooperative stochastic game: same reward function for all agents

« Equilibrium for cooperative stochastic games is the Pareto dominating (Nash) equilibrium
 Nash equilibrium: Vi, a;, R;(a;,a”;) = R;(a;,a”;)
« Pareto dominating: Vi R;(a*) = R;(a")

« There exists a unique Pareto dominating (Nash) equilibrium

Bob
Baseball Soccer
Baseball 2,2 0,0
Alice
Soccer 0,0 1,1
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Competitive Stochastic Games

« The equilibrium in the case of competitive stochastic games is the min-max Nash
equilibrium

« Each stage game of this stochastic game faces a zero-sum game
« There exists a unique min-max (Nash) equilibrium in utilities
« Optimal min-max value function

V) (s) = maxmin[r!(s,a’,a™) + yXPr(s'|s,a’,a )V (s)]
al a=J s/
« For a competitive stochastic game there exists a unique min-max value function
and hence a unique min-max Q-function
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Learning in competitive stochastic games

= Algorithm: Minimax Q-Learning

- Q-values for each agent j are over joint actions: Q/ (s, a’, a™/)
= S = state
« a’ = action
= a7 = opponent action

- Instead of playing the best Q7 (s, a’, a™/) play min-max Q
Q/(s,a’,a) « (1 —a)Q/(s,al,a™?) + a(r’ +yVI(s"))

Vi(s") « maxminQ’(s’,a’,a™/)
al] a=J
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Minimax 0 learning

Minimax Qlearning
Repeat
Repeat for each agent
Select and execute action a’
Observe s’,a™/ and r
Update counts: n(s,a) <« n(s,a) + 1
Learning rate: a «

Update Q-value:

0l(s,a),a7) « (1 - @)Qi(s, @), a™) + a(r) +ymaxminQl(s',a"),a'~})))
a a

n(s,a)

s « s’
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Convergence of Minimax Tabular ( learning

= Convergence in self-play
= Minimax Q-learning converges to min-max equilibrium in competitive game if:
= Every state is visited infinitely often (e.g. epsilon-greedy or Boltzmann exploration)

= The learning rate « is decreased fast enough, but not too fast
(sufficient conditions for «):

(D) Ya, >0 (2)X(ap)? <

= In a competitive stochastic games, the Nash Q-values are unique (guaranteed unique min-max
equilibrium point in utilities)
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Opponent Modelling

In a competitive game rational agents always take a min-max action

There is no requirement for a separate opponent modelling strategy in self-play

However:
= Other agents could use different algorithms

= Computing the min-max action can be time consuming

Alternative: Fictitious play
= Fact: Fictitious play also converges in competitive zero-sum games

= Fact: Fictitious play converges to the min-max action in self-play
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(Mixed) Stochastic Games/ General-sum Stochastic Game

= Rewards for each agent can be arbitrary
= Rewards are not the same for all agent (i.e., not cooperative)
= They do not sum to 0 (i.e., not entirely competitive)

= Objective for agent: Find the optimal policy for best response

What should be the solution concept?

= There could be multiple Nash equilibria

= Nash theorem: at-least one mixed strategy Nash equilibrium exists
= Area of research
= Various solution concepts

= Various forms of opponent modeling 7Y \MveRsiTY or
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