Lecture 15: Game Theory CS486/686 Intro to Artificial Intelligence

Pascal Poupart David R. Cheriton School of Computer Science CIFAR AI Chair at Vector Institute

Outline

- § Game Theory
- § Normal form games
	- § Strictly dominated strategies
	- § Pure strategy Nash equilibria
	- § Mixed Nash equilibria

Multi-agent Decision Making

- § Sequential Decision Making
	- § Markov Decision Processes
	- § Reinforcement Learning
	- § Multi-Armed Bandits
- All in single agent environments
- Real world environments: usually more than one agent?
	- § Each agent needs to account for other agents' actions/behaviours

Reinforcement Learning

- § **Game**: Any scenario where outcomes depend on actions of two or more rational and self-interested players
	- § **Players** (Decision Makers)
		- § Agents within the game (observe states and take actions)
	- § **Rational**
		- § Agents choose their best actions (unless exploring)
	- § **Self-interested**
		- Only care about their own benefits
		- May/May not harm others

Which of these are games?

Atari Solitaire

CS486/686 Spring 2024 - Lecture 15 - Pascal Poupart PAGE 6

Game Theory

- § **Game Theory**: Mathematical model of strategic interactions among multiple rational agents in a game
	- § **Interaction:**
		- One agent directly affects other agent(s)
		- Reward for one agent depends on other agent(s)
	- § **Strategic:**
		- § Agents maximize their reward by taking into account their influence (through actions) on the game
	- § **Multiple:**
		- At-least two agents

Game Theory Applications

- § Auctions
- Diplomacy
- § Negotiations
- § Sports analytics
- § Autonomous Driving
- § Conversational agents

Categorization of Games

- § Games can be
	- **Cooperative:** agents have a common goal
	- **Competitive:** agents have conflicting goals
	- **Mixed:** in between cooperative and competitive (agents have different goals, but they are not conflicting)

Cooperative Competitive Competitive Mixed

Normal Form Games

- Set of **agents**: $I = 1, 2, ..., N$, where $N \ge 2$
- Set of **actions** for each agent: $A_i = \{a_i^1, ..., a_i^m\}$
	- **•** Game outcome is a **strategy profile (joint action)**: $a = (a_1, ..., a_n)$
	- Total space of joint actions: $a \in \{A_1 \times A_2 \times \cdots \times A_N\}$
- **Reward function** for each agent: $R_i: \mathbf{A} \to \mathfrak{R}$, where $\mathbf{A} = \{A_1 \times A_2 \times \cdots \times A_N\}$
- § No state
- Horizon: $h = 1$

Example: Even or Odd

Agent 2

One Two

Zero-sum game: $\sum R_i(a_1, ..., a_n) = 0$ $i = 1$ \boldsymbol{n}

 $I = \{1,2\}$ $A_i = \{One, Two\}$ An outcome is (One, Two) $R_1(One, Two) = -3$ and $R_2(One, Two) = 3$

Examples of strategic games

Chicken

Coordination Game

Anti-Coordination Game

CS486/686 Spring 2024 - Lecture 15 - Pascal Poupart PAGE 12

Example: Prisoner's Dilemma

Confess Don't Confess

Playing a game

- We now know how to describe a game
- Next step Playing the game!
- § Recall, agents are **rational**
	- Let p_i be agent i's beliefs about what its opponents will do
	- Agent *i* is rational if it chooses to play a_i^* where

 $a_i^* = argmax_{a_i} \ \sum_i$ $\boldsymbol{\mu}$ $R(a_i, a_{-i}) p_i(a_{-i})$ Notation: $a_{-i} = (a_1, ..., a_{i-1}, a_{i+1}, ..., a_n)$

Dominated Strategies

• Definition: A strategy is *strictly dominated* if

 $\exists a'_i, \forall a_{-i}, R_i(a_i, a_{-i}) < R(a'_i, a_{-i})$

- A rational agent will never play a strictly dominated strategy!
	- This allows us to solve some games!

Example: Prisoner's Dilemma

 $-10,0$ Confess $-5,-5$ $0,-10$ **Confess** Don't **Confess** Don't Confess

UNIVERSITY OF

Strict Dominance does not capture the whole picture

What strict dominance eliminations can we do?

 Ω

Nash Equilibrium

- § Sometimes an agent's best-response depends on the strategies other agents are playing
- A strategy profile, a^* , is a **Nash equilibrium** if no agent has incentive to deviate from its strategy *given that others do not deviate*:

$$
\forall i, a_i, \qquad R_i(a_i^*, a_{-i}^*) \ge R_i(a_i, a_{-i}^*)
$$

Nash Equilibrium

■ Equivalently, a^* is a Nash equilibrium iff $\forall i$ $a_i^* = argmax_{a_i} R_i(a_i, a_{-i}^*)$

(C,C) is a Nash equilibrium because:

 $R_1(C, C) = \max\{R_1(A, C), R_1(B, C), R_1(C, C)\}\$

AND

 $R_2(C, C) = \max\{R_2(C, A), R_2(C, B), R_2(C, C)\}\$

Exercise 1

Exercise 2

What are the Nash Equilibria?

No Nash equilibrium

(Mixed) Nash Equilibria

- Mixed strategy σ_i : σ_j defines a probability distribution over A_i
- Strategy profile: $\sigma = (\sigma_1, ..., \sigma_n)$
- Expected utility: $R_i(\sigma) = \sum_a (\prod_j \sigma(a_j))R_i(a)$
- Nash Equilibrium: σ^* is a (mixed) Nash equilibrium if

 $\forall i \ R_i(\sigma_i^*, \sigma_{-i}^*) \geq R_i(\sigma_i', \sigma_{-i}^*) \ \forall \sigma_i'$

Finding Mixed Nash Equilibria

- Two players: $\sigma = (\sigma_1, \sigma_2)$
	- Let $p = \sigma_1$ and $q = \sigma_2$.
- At the equilibrium:
	- p^* should be best strategy given q^* : $p^* = argmax_p R_1(p, q^*)$
	- q^* should be best strategy given p^* : $q^* = argmax_q R_2(p^*, q)$
- Solve system of equations:
	- § $\frac{\partial}{\partial p}R_1(p,q)=0$
	- § ∂ $\frac{\partial}{\partial q}R_2(p,q)=0$

$2,-2$ $-3,3$ $-3,3$ 4,-4 **One Two One Two** $p = Pr(one)$ $q = Pr(one)$ **A Exercise 2 Revisited**

How do we determine p and q ?

$$
R_A(p,q) = 2pq - 3p(1-q) - 3(1-p)q + 4(1-p)(1-q)
$$

\n
$$
R_B(p,q) = -2pq + 3p(1-q) + 3(1-p)q - 4(1-p)(1-q)
$$

\n
$$
\frac{\partial}{\partial p} R_A(p,q) = 12q - 7 \rightarrow q = \frac{7}{12}
$$

\n
$$
\frac{\partial}{\partial q} R_B(p,q) = -12p + 7 \rightarrow p = \frac{7}{12}
$$

Exercise 3

B S

ĸ	\mathcal{L}	11
\blacktriangleright	\cup \cup	$\overline{}$

This game has 3 Nash equilibria (2 pure strategy Nash equilibria and 1 mixed strategy Nash equilibrium). Find them.

 $R_1(p_1g) = 2p_1 + 1(1-p_1)(1-p_1)$
 $R_2(p_1g) = 1p_1 + 2(1-p_1)(1-p_1)$ $p_{b} + \sum_{i} (1 - p_{i})(1 - p_{i})$ $\frac{1}{3}$ $2q - (1 - q) = 0$ $\frac{36}{26}$ = $6 - 2(1 - 8) = 0$ => b

CS486/686 Spring 2024 - Lecture 15 - Pascal Poupart PAGE 25

Mixed Nash Equilibrium

• **Theorem** (Nash 1950):

Every game in which the strategy sets A_1, \ldots, A_n have a finite number of elements has a mixed strategy equilibrium.

John Nash Nobel Prize in Economics (1994)

Other Useful Theorems

§ **Theorem:** In an n-player pure strategy game, if iterated elimination of strictly dominated strategies eliminates all but the strategies $(a_1^*,...,a_n^*)$ then these strategies are the unique Nash equilibria of the game

• **Theorem:** Any Nash equilibrium will survive iterated elimination of strictly dominated strategies.

Nash Equilibrium

- § Interpretations:
	- § Focal points, self-enforcing agreements, stable social convention, consequence of rational inference..
- § Criticisms
	- They may not be unique
		- § Ways of overcoming this: Refinements of equilibrium concept, Mediation, Learning
	- They may be hard to find
	- People don't always behave based on what equilibria would predict

