Lecture 15: Game Theory CS486/686 Intro to Artificial Intelligence

Pascal Poupart David R. Cheriton School of Computer Science CIFAR AI Chair at Vector Institute

Outline

- Game Theory
- Normal form games
 - Strictly dominated strategies
 - Pure strategy Nash equilibria
 - Mixed Nash equilibria

Multi-agent Decision Making

- Sequential Decision Making
 - Markov Decision Processes
 - Reinforcement Learning
 - Multi-Armed Bandits
- All in single agent environments
- Real world environments: usually more than one agent?
 - Each agent needs to account for other agents' actions/behaviours

Reinforcement Learning

- Game: Any scenario where outcomes depend on actions of two or more rational and self-interested players
 - **Players** (Decision Makers)
 - Agents within the game (observe states and take actions)
 - Rational
 - Agents choose their best actions (unless exploring)
 - Self-interested
 - Only care about their own benefits
 - May/May not harm others

Which of these are games?

Atari

Solitaire

UNIVERSITY OF

Go

Game Theory

- **Game Theory**: Mathematical model of strategic interactions among multiple rational agents in a game
 - Interaction:
 - One agent directly affects other agent(s)
 - Reward for one agent depends on other agent(s)
 - Strategic:
 - Agents maximize their reward by taking into account their influence (through actions) on the game
 - Multiple:
 - At-least two agents

Game Theory Applications

- Auctions
- Diplomacy
- Negotiations
- Sports analytics
- Autonomous Driving
- Conversational agents

Categorization of Games

- Games can be
 - **Cooperative:** agents have a common goal
 - **Competitive:** agents have conflicting goals
 - **Mixed:** in between cooperative and competitive (agents have different goals, but they are not conflicting)

Competitive

Normal Form Games

- Set of **agents**: I = 1, 2, ..., N, where $N \ge 2$
- Set of **actions** for each agent: $A_i = \{a_i^1, \dots, a_i^m\}$
 - Game outcome is a **strategy profile (joint action)**: $a = (a_1, ..., a_n)$
 - Total space of joint actions: $a \in \{A_1 \times A_2 \times \cdots \times A_N\}$
- **Reward function** for each agent: $R_i: A \to \Re$, where $A = \{A_1 \times A_2 \times \cdots \times A_N\}$
- No state
- Horizon: *h* = 1

Example: Even or Odd

Agent 2

One Two

Agent 1	One	2,-2	-3,3
	Two	-3, <mark>3</mark>	4,-4

Zero-sum game: $\sum_{i=1}^{n} R_i(a_1, \dots, a_n) = 0$

 $I = \{1,2\}$ $A_i = \{One, Two\}$ An outcome is (One, Two) $R_1(One, Two) = -3 \text{ and } R_2(One, Two) = 3$

Examples of strategic games

Coordination Game

Anti-Coordination Game

CS486/686 Spring 2024 - Lecture 15 - Pascal Poupart

Example: Prisoner's Dilemma

Confess Don't Confess

Confess	-5,-5	0,-10
Don't Confess	-10,0	-1,-1

CS486/686 Spring 2024 - Lecture 15 - Pascal Poupart

Playing a game

- We now know how to describe a game
- Next step Playing the game!
- Recall, agents are **rational**
 - Let p_i be agent *i*'s beliefs about what its opponents will do
 - Agent *i* is rational if it chooses to play a_i^* where

 $a_{i}^{*} = argmax_{a_{i}} \sum_{\substack{q = a \\ p = a \\ q = a}} R(a_{i}, a_{-i})p_{i}(a_{-i})$ Notation: $a_{-i} = (a_{1}, \dots, a_{i-1}, a_{i+1}, \dots, a_{n})$

Dominated Strategies

Definition: A strategy is strictly dominated if

 $\exists a_i', \forall a_{-i}, R_i(a_i, a_{-i}) < R(a_i', a_{-i})$

- A rational agent will never play a strictly dominated strategy!
 - This allows us to solve some games!

Example: Prisoner's Dilemma

Confess Don't Confess -5,-5 0,-10 Confess -10,0 Don't Confess

UNIVERSITY

Strict Dominance does not capture the whole picture

What strict dominance eliminations can we do?

None

Nash Equilibrium

- Sometimes an agent's best-response depends on the strategies other agents are playing
- A strategy profile, *a**, is a Nash equilibrium if no agent has incentive to deviate from its strategy *given that others do not deviate*:

$$\forall i, a_i, \qquad R_i(a_i^*, a_{-i}^*) \ge R_i(a_i, a_{-i}^*)$$

Nash Equilibrium

• Equivalently, a^* is a Nash equilibrium iff $\forall i \ a_i^* = argmax_{a_i}R_i(a_i, a_{-i}^*)$

_	Α	В	С
A	0,4	4,0	5,3
В	4,0	0,4	5,3
С	3,5	3,5	6,6

(C,C) is a Nash equilibrium because:

 $R_1(C,C) = \max\{R_1(A,C), R_1(B,C), R_1(C,C)\}$

AND

 $R_2(C,C) = \max\{R_2(C,A), R_2(C,B), R_2(C,C)\}$

Exercise 1

Exercise 2

What are the Nash Equilibria?

No Nash equilibrium

(Mixed) Nash Equilibria

- Mixed strategy σ_i : σ_i defines a probability distribution over A_i
- Strategy profile: $\boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_n)$
- Expected utility: $R_i(\boldsymbol{\sigma}) = \sum_a (\prod_j \sigma(a_j)) R_i(a)$
- Nash Equilibrium: σ^* is a (mixed) Nash equilibrium if

 $\forall i R_i(\sigma_i^*, \sigma_{-i}^*) \ge R_i(\sigma_i', \sigma_{-i}^*) \forall \sigma_i'$

Finding Mixed Nash Equilibria

- Two players: $\boldsymbol{\sigma} = (\sigma_1, \sigma_2)$
 - Let $p = \sigma_1$ and $q = \sigma_2$
- At the equilibrium:
 - p^* should be best strategy given $q^*: p^* = argmax_p R_1(p, q^*)$
 - q^* should be best strategy given $p^*: q^* = argmax_q R_2(p^*, q)$
- Solve system of equations:
 - $\frac{\partial}{\partial p} R_1(p,q) = 0$
 - $\frac{\partial}{\partial q}R_2(p,q) = 0$

Exercise 2 Revisited One B Two One 2,-2 -3,3 q = Pr(one)q = Pr(one)

How do we determine p and q?

$$\begin{split} R_A(p,q) &= 2pq - 3p(1-q) - 3(1-p)q + 4(1-p)(1-q) \\ R_B(p,q) &= -2pq + 3p(1-q) + 3(1-p)q - 4(1-p)(1-q) \\ &\quad \frac{\partial}{\partial p} R_A(p,q) = 12q - 7 \rightarrow q = \frac{7}{12} \\ &\quad \frac{\partial}{\partial q} R_B(p,q) = -12p + 7 \rightarrow p = \frac{7}{12} \end{split}$$

Exercise 3

B S

B	2,1	0,0
S	0,0	1,2

This game has 3 Nash equilibria (2 pure strategy Nash equilibria and 1 mixed strategy Nash equilibrium). Find them.

 $\begin{aligned} R_{i}(p,q) &= 2pq + i(1-p)(1-q) \\ R_{2}(p,q) &= 1pq + 2(1-p)(1-q) \\ \frac{2R_{i}}{2p} &= 2q - (1-q) = cs \implies q = 1/3 \\ \frac{2R_{2}}{2q} &= p - 2(1-q) = cs \implies p = 2/3 \end{aligned}$

CS486/686 Spring 2024 - Lecture 15 - Pascal Poupart

Mixed Nash Equilibrium

• **Theorem** (Nash 1950):

Every game in which the strategy sets $A_1, ..., A_n$ have a finite number of elements has a mixed strategy equilibrium.

John Nash Nobel Prize in Economics (1994)

Other Useful Theorems

• **Theorem:** In an n-player pure strategy game, if iterated elimination of strictly dominated strategies eliminates all but the strategies (a₁^{*},...,a_n^{*}) then these strategies are the unique Nash equilibria of the game

• **Theorem:** Any Nash equilibrium will survive iterated elimination of strictly dominated strategies.

Nash Equilibrium

- Interpretations:
 - Focal points, self-enforcing agreements, stable social convention, consequence of rational inference..
- Criticisms
 - They may not be unique
 - Ways of overcoming this: Refinements of equilibrium concept, Mediation, Learning
 - They may be hard to find
 - People don't always behave based on what equilibria would predict

