# Lecture 13: Multi-Armed Bandits CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science
CIFAR AI Chair at Vector Institute





#### **Outline**

- Exploration/exploitation tradeoff
- Regret
- Multi-armed bandits
  - $\epsilon$ -greedy strategies
  - Upper confidence bounds
  - Thompson sampling



# **Exploration/Exploitation Tradeoff**

• Fundamental problem of RL due to the active nature of the learning process

Consider one-state RL problems known as bandits



#### **Stochastic Bandits**

- Formal definition:
  - Single state:  $S = \{s\}$
  - *A*: set of actions (also known as arms)
  - Space of rewards (often re-scaled to be [0,1])
- No transition function to be learned since there is a single state
- We simply need to learn the **stochastic** reward function



# **Origin and Applications**

 "bandit" comes from gambling where slot machines can be thought as one-armed bandits.

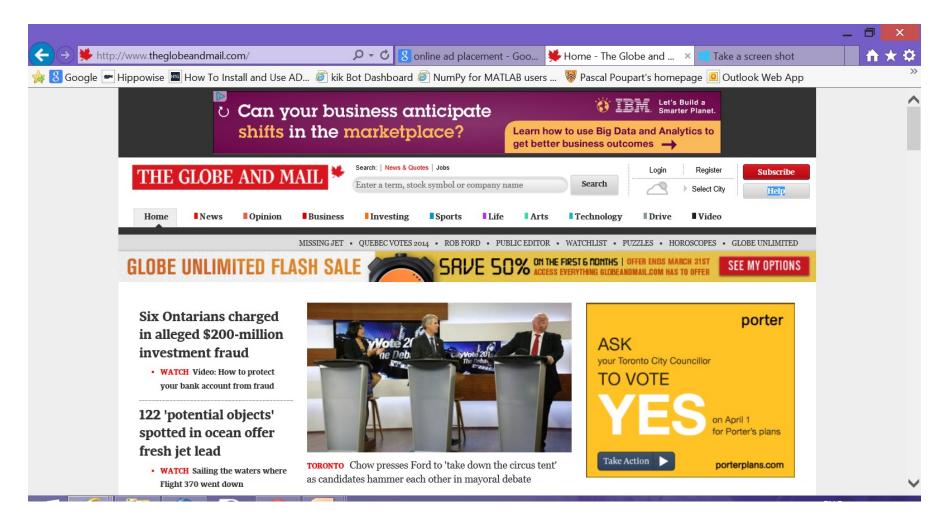


#### **Applications**

- **Marketing** (ad placement, recommender systems)
- Loyalty programs (personalized offers)
- **Pricing** (airline seat pricing, cargo shipment pricing, food pricing)
- Optimal design (web design, interface personalization)
- **Networks** (routing)



#### **Online Ad Placement**





# **Online Ad Optimization**

Problem: which ad should be presented?

Answer: present ad with highest payoff

$$payoff = clickThroughRate \times payment$$

- Click through rate: probability that user clicks on ad
- Payment: \$\$ paid by advertiser
  - Amount determined by an auction



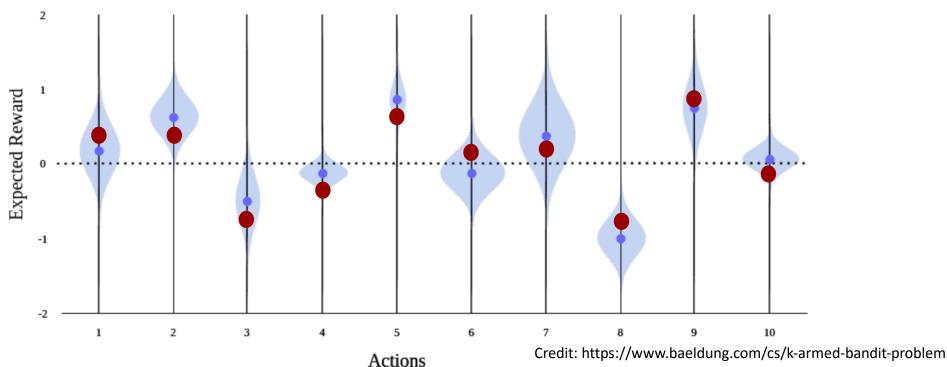
#### **Simplified Problem**

- Assume payment is 1 unit for all ads
- Need to estimate click through rate
- Formulate as a bandit problem:
  - Arms: the set of possible ads
  - Rewards: 0 (no click) or 1 (click)
- In what order should ads be presented to maximize revenue?
  - How should we balance exploitation and exploration?



#### **Uncertainty Quantification**

- Distribution of rewards: Pr(r|a)
- Expected reward: R(a) = E(r|a)
- Empirical average reward:  $\tilde{R}(a) = \frac{1}{n} \sum_{t=0}^{n} r_{t}$



#### **Simple Heuristics**

- Greedy strategy: select the arm with the highest average so far
  - May get stuck due to lack of exploration

- $\epsilon$ -greedy: select an arm at random with probability  $\epsilon$  and otherwise do a greedy selection
  - Convergence rate depends on choice of  $\epsilon$



# Regret

- Let R(a) be the unknown average reward of a
- Let  $r^* = \max_a R(a)$  and  $a^* = argmax_a R(a)$
- Denote by loss(a) the expected regret of a

$$loss(a) = r^* - R(a)$$

• Denote by  $Loss_n$  the expected cumulative regret for n time steps

$$Loss_n = \sum_{t=1}^{N} loss(a_t)$$



#### **Theoretical Guarantees**

- When  $\epsilon$  is constant, then
  - For large enough t:  $Pr(a_t \neq a^*) \approx \epsilon$
  - Expected cumulative regret:  $Loss_n \approx \sum_{t=1}^n \epsilon = O(n)$ 
    - Linear regret
- When  $\epsilon_t \propto 1/t$ 

  - For large enough t:  $\Pr(a_t \neq a^*) \approx \epsilon_t = O\left(\frac{1}{t}\right)$  Expected cumulative regret:  $Loss_n \approx \sum_{t=1}^n \frac{1}{t} = O(\log n)$ 
    - Logarithmic regret



# **Empirical Mean**

• Problem: how far is the empirical mean  $\tilde{R}(a)$  from the true mean R(a)?

- If we knew that  $|R(a) \tilde{R}(a)| \le bound$ 
  - Then we would know that  $R(a) < \tilde{R}(a) + bound$
  - And we could select the arm with best  $\tilde{R}(a) + bound$

• Overtime, additional data will allow us to refine  $\tilde{R}(a)$  and compute a tighter *bound*.



#### Positivism in the Face of Uncertainty

- Suppose that we have an oracle that returns an upper bound  $UB_n(a)$  on R(a) for each arm based on n trials of arm a.
- Suppose the upper bound returned by this oracle converges to R(a) in the limit:
  - i.e.,  $\lim_{n\to\infty} UB_n(a) = R(a)$
- Optimistic algorithm
  - At each step, select  $argmax_a$   $UB_n(a)$



#### Convergence

• Theorem: An optimistic strategy that always selects  $\operatorname{argmax}_a UB_n(a)$  will converge to  $a^*$ 

- Proof by contradiction:
  - Suppose that we converge to suboptimal arm a after infinitely many trials.
  - Then  $R(a) = UB_{\infty}(a) \ge UB_{\infty}(a') = R(a') \ \forall a'$
  - But  $R(a) \ge R(a') \ \forall a'$  contradicts our assumption that a is suboptimal.

# **Probabilistic Upper Bound**

- Problem: We can't compute an upper bound with certainty since we are sampling
- However, we can obtain measures f that are upper bounds most of the time

• i.e., 
$$Pr(R(a) \le f(a)) \ge 1 - \delta$$

• Example: Hoeffding's inequality

$$\Pr\left(R(a) \le \tilde{R}(a) + \sqrt{\frac{\log(\frac{1}{\delta})}{2n_a}}\right) \ge 1 - \delta$$

where  $n_a$  is the number of trials for arm a



# **Upper Confidence Bound (UCB)**

- Set  $\delta_n = 1/n^4$  in Hoeffding's bound
- Choose a with highest Hoeffding bound

```
V \leftarrow 0, \ n \leftarrow 0, \ n_a \leftarrow 0 \ \forall a
    Repeat until n = h
         Execute \underset{a}{\operatorname{argmax}} \tilde{R}(a) + \sqrt{\frac{2 \log n}{n}}
          Receive r
          V \leftarrow V + r
        \tilde{R}(a) \leftarrow \frac{n_a \tilde{R}(a) + r}{n_a + 1}
n \leftarrow n + 1, \quad n_a \leftarrow n_a + 1
Return V
```



# **UCB Convergence**

• **Theorem:** Although Hoeffding's bound is probabilistic, UCB converges.

- **Idea:** As n increases, the term  $\sqrt{\frac{2 \log n}{n_a}}$  increases, ensuring that all arms are tried infinitely often
- Expected cumulative regret:  $Loss_n = O(\log n)$ 
  - Logarithmic regret



# **Extension of A/B Testing**

- A/B Testing: randomized experiment with 2 variants
  - Select best variant after completion of experiment

#### Example: email marketing

- "Offer ends this Saturday! Use code A" (response rate: 5%)
- "Offer ends soon! Use code B" (response rate: 3%)

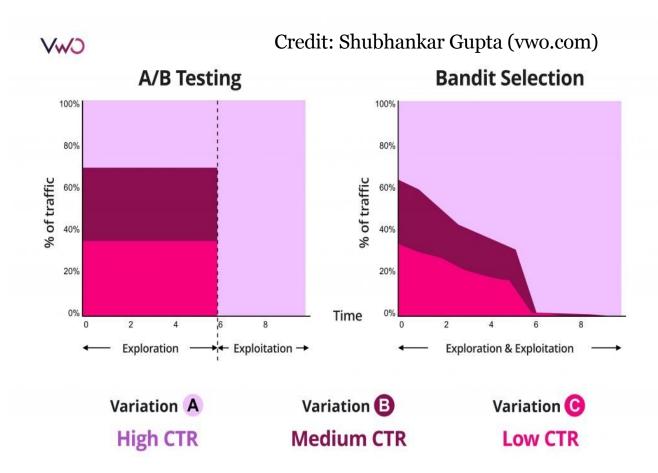
 Multi-armed bandits: form of continual A/B testing





#### **Multi-Armed Bandit**

| Components     | Formal Def                            | Marketing    |
|----------------|---------------------------------------|--------------|
| Actions (arms) | $a \in A$                             | {A, B, C}    |
| Rewards        | $r \in \mathbb{R}$                    | {0, 1}       |
| Reward model   | Pr(r a)                               | unknown      |
| Horizon        | $h \in \mathbb{N} \text{ or } \infty$ | $h = \infty$ |





# **Bayesian Learning**

#### Notation:

- $r^a$ : random variable for a's rewards
- $Pr(r^a; \theta)$ : unknown distribution (parameterized by  $\theta$ )
- $R(a) = E[r^a]$ : unknown average reward

#### • Idea:

- Express uncertainty about  $\theta$  by a prior  $Pr(\theta)$
- Compute posterior  $\Pr(\theta | r_1^a, r_2^a, ..., r_n^a)$  based on samples  $r_1^a, r_2^a, ..., r_n^a$  observed for a so far.

#### Bayes theorem:

$$\Pr(\theta|r_1^a, r_2^a, ..., r_n^a) \propto \Pr(\theta) \Pr(r_1^a, r_2^a, ..., r_n^a|\theta)$$



#### **Distributional Information**

- Posterior over  $\theta$  allows us to estimate
  - Distribution over next reward  $r^a$

$$\Pr(r^{a}|r_{1}^{a}, r_{2}^{a}, ..., r_{n}^{a}) = \int_{\theta} \Pr(r^{a}; \theta) \Pr(\theta|r_{1}^{a}, r_{2}^{a}, ..., r_{n}^{a}) d\theta$$

• Distribution over R(a) when  $\theta$  includes the mean

$$\Pr(R(a)|r_1^a, r_2^a, ..., r_n^a) = \Pr(\theta|r_1^a, r_2^a, ..., r_n^a) \text{ if } \theta = R(a)$$

- To guide exploration:
  - UCB:  $Pr(R(a) \le bound(r_1^a, r_2^a, ..., r_n^a)) \ge 1 \delta$
  - Bayesian techniques:  $Pr(R(a)|r_1^a, r_2^a, ..., r_n^a)$



# **Coin Example**

• Consider two biased coins  $C_1$  and  $C_2$ 

$$R(C_1) = Pr(C_1 = head)$$

$$R(C_2) = Pr(C_2 = head)$$

- Problem:
  - Maximize # of heads in k flips
  - Which coin should we choose for each flip?



#### **Bernoulli Variables**

•  $r^{C_1}$ ,  $r^{C_2}$  are Bernoulli variables with domain  $\{0,1\}$ 

Bernoulli distributions are parameterized by their mean

• i.e., 
$$\Pr(r^{C_1}; \theta_1) = \theta_1 = R(C_1)$$
  

$$\Pr(r^{C_2}; \theta_2) = \theta_2 = R(C_2)$$

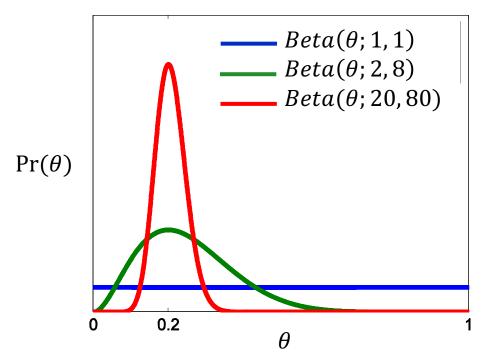
#### **Beta Distribution**

• Let the prior  $Pr(\theta)$  be a Beta distribution

$$Beta(\theta; \alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

- $\alpha 1$ : # of heads
- $\beta$  1: # of tails

•  $E[\theta] = \alpha/(\alpha + \beta)$ 





# **Belief Update**

- Prior:  $Pr(\theta) = Beta(\theta; \alpha, \beta) \propto \theta^{\alpha 1} (1 \theta)^{\beta 1}$
- Posterior after coin flip:

$$\Pr(\theta|head) \propto \Pr(\theta) \qquad \Pr(head|\theta)$$

$$\propto \theta^{\alpha-1}(1-\theta)^{\beta-1} \qquad \theta$$

$$= \theta^{(\alpha+1)-1}(1-\theta)^{\beta-1} \propto Beta(\theta; \alpha+1, \beta)$$

$$\Pr(\theta|tail) \propto \qquad \Pr(\theta) \qquad \Pr(tail|\theta)$$

$$\propto \theta^{\alpha-1}(1-\theta)^{\beta-1} \qquad (1-\theta)$$

$$= \theta^{\alpha-1}(1-\theta)^{(\beta+1)-1} \propto Beta(\theta; \alpha, \beta+1)$$



# **Thompson Sampling**

- Idea:
  - Sample several potential average rewards:

$$\hat{R}(a) \sim \Pr(R(a)|r_1^a, ..., r_n^a)$$
 for each  $a$ 

- Execute  $argmax_a \hat{R}(a)$
- Coin example
  - $\Pr(R(a)|r_1^a, ..., r_n^a) = \text{Beta}(\theta_a; \alpha_a, \beta_a)$ where  $\alpha_a - 1 = \#heads$  and  $\beta_a - 1 = \#tails$

# Thompson Sampling (Bernoulli rewards)

```
ThompsonSampling(h)
Initialize \alpha_a \leftarrow 1, \beta_a \leftarrow 1 \ \forall a
Repeat h times
Sample \hat{R}(a) \sim Beta(R(a)|\alpha_a,\beta_a) \ \forall a
a^* \leftarrow \operatorname{argmax}_a \hat{R}(a)
Execute a^* and receive r
if r = 1 then \alpha_{a^*} \leftarrow \alpha_{a^*} + 1
else \beta_{a^*} \leftarrow \beta_{a^*} + 1
```

# **Analysis**

Thompson sampling converges to best arm

- Theory:
  - Expected cumulative regret:  $O(\log n)$
  - On par with UCB and  $\epsilon$ -greedy
- Practice:
  - Thompson Sampling often outperforms UCB and  $\epsilon$ -greedy

