Lecture 13: Multi-Armed Bandits CS486/686 Intro to Artificial Intelligence

Pascal Poupart David R. Cheriton School of Computer Science CIFAR AI Chair at Vector Institute

Outline

- § Exploration/exploitation tradeoff
- § Regret
- § Multi-armed bandits
	- \cdot ϵ -greedy strategies
	- § Upper confidence bounds
	- § Thompson sampling

Exploration/Exploitation Tradeoff

• Fundamental problem of RL due to the active nature of the learning process

• Consider one-state RL problems known as bandits

Stochastic Bandits

- § Formal definition:
	- Single state: $S = \{s\}$
	- A: set of actions (also known as arms)
	- Space of rewards (often re-scaled to be [0,1])
- No transition function to be learned since there is a single state
- § We simply need to learn the **stochastic** reward function

Origin and Applications

§ "bandit" comes from gambling where slot machines can be thought as one-armed bandits.

Applications

- **Marketing** (ad placement, recommender systems)
- **Loyalty programs** (personalized offers)
- **Pricing** (airline seat pricing, cargo shipment pricing, food pricing)
- **Optimal design** (web design, interface personalization)
- § **Networks** (routing)

Online Ad Placement

Online Ad Optimization

- Problem: which ad should be presented?
- Answer: present ad with highest payoff

 $payoff = clickThroughRate \times payment$

- Click through rate: probability that user clicks on ad
- § Payment: \$\$ paid by advertiser
	- Amount determined by an auction

Simplified Problem

- § Assume payment is 1 unit for all ads
- Need to estimate click through rate
- § Formulate as a bandit problem:
	- § Arms: the set of possible ads
	- § Rewards: 0 (no click) or 1 (click)
- § In what order should ads be presented to maximize revenue?
	- § How should we balance exploitation and exploration?

Uncertainty Quantification

Distribution of rewards: $Pr(r|a)$

• Expected reward: $R(a) = E(r|a)$

• Empirical average reward: $\tilde{R}(a) = \frac{1}{n} \sum_{t=1}^{n} r_t$

Simple Heuristics

- § Greedy strategy: select the arm with the highest average so far
	- § May get stuck due to lack of exploration

- ϵ -greedy: select an arm at random with probability ϵ and otherwise do a greedy selection
	- Convergence rate depends on choice of ϵ

Regret

- Let $R(a)$ be the unknown average reward of a
- Let $r^* = \max_{a} R(a)$ and $a^* = \argmax_{a} R(a)$ \boldsymbol{a}
- Denote by $loss(a)$ the expected regret of a

 $loss(a) = r^* - R(a)$

■ Denote by \textit{Loss}_n the expected cumulative regret for n time steps

$$
Loss_n = \sum_{t=1} loss(a_t)
$$

Theoretical Guarantees

- When ϵ is constant, then
	- For large enough t: $Pr(a_t \neq a^*) \approx \epsilon$
	- Expected cumulative regret: $Loss_n \approx \sum_{t=1}^{n} \epsilon = O(n)$
		- § Linear regret
- When $\epsilon_t \propto 1/t$
	- For large enough t : Pr($a_t \neq a^*$) ≈ $\epsilon_t = O\left(\frac{1}{t}\right)$
	- Expected cumulative regret: $Loss_n \approx \sum_{t=1}^{n} \frac{1}{t}$ t $= O(\log n)$
		- § Logarithmic regret

Empirical Mean

- **•** Problem: how far is the empirical mean $\overline{R}(a)$ from the true mean $R(a)$?
- If we knew that $|R(a) \tilde{R}(a)| \leq bound$
	- Then we would know that $R(a) < \tilde{R}(a) + bound$
	- And we could select the arm with best $\tilde{R}(a) + bound$
- Overtime, additional data will allow us to refine $\tilde{R}(a)$ and compute a tighter *bound*.

Positivism in the Face of Uncertainty

- Suppose that we have an oracle that returns an upper bound $UB_n(a)$ on $R(a)$ for each arm based on *n* trials of arm a .
- Suppose the upper bound returned by this oracle converges to $R(a)$ in the limit:
	- § i.e., lim $\lim_{n\to\infty}UB_n(a)=R(a)$
- Optimistic algorithm
	- At each step, select $argmax_a \; UB_n(a)$

Convergence

- Theorem: An optimistic strategy that always selects argmax_a $UB_n(a)$ will converge to a^*
- Proof by contradiction:
	- Suppose that we converge to suboptimal arm α after infinitely many trials.
	- Then $R(a) = UB_{\infty}(a) \ge UB_{\infty}(a') = R(a') \forall a'$
	- But $R(a) \ge R(a') \forall a'$ contradicts our assumption that a is suboptimal.

Probabilistic Upper Bound

- Problem: We can't compute an upper bound with certainty since we are sampling
- However, we can obtain measures f that are upper bounds most of the time
	- i.e., $Pr(R(a) \le f(a)) \ge 1 \delta$
	- Example: Hoeffding's inequality

$$
\Pr\left(R(a) \le \tilde{R}(a) + \sqrt{\frac{\log(\frac{1}{\delta})}{2n_a}}\right) \ge 1 - \delta
$$

where n_a is the number of trials for arm a

Upper Confidence Bound (UCB)

- Set $\delta_n = 1/n^4$ in Hoeffding's bound
- Choose α with highest Hoeffding bound

 $UCB(h)$ $V \leftarrow 0$, $n \leftarrow 0$, $n_a \leftarrow 0$ $\forall a$ Repeat until $n = h$ Execute argmax_a $\tilde{R}(a) + \sqrt{\frac{2 \log n}{n}}$ n_a Receive r $V \leftarrow V + r$ $\tilde{R}(a) \leftarrow \frac{n_a \tilde{R}(a) + r}{n_a + 1}$ n_a+1 $n + 1, n - n$ Return updad
Landon $\frac{1}{n_a}$ $\frac{1}{n_a+1}$ average counts

UCB Convergence

- § **Theorem:** Although Hoeffding's bound is probabilistic, UCB converges.
- **Idea:** As *n* increases, the term $\frac{2 \log n}{n}$ n_a increases, ensuring that all arms are tried infinitely often
- Expected cumulative regret: $Loss_n = O(log n)$
	- § Logarithmic regret

Extension of A/B Testing

- § **A/B Testing:** randomized experiment with 2 variants
	- § Select best variant after completion of experiment

Example: email marketing

- "Offer ends this Saturday! Use code A" (response rate: 5%)
- "Offer ends soon! Use code B" (response rate: 3%)
- § **Multi-armed bandits:** form of continual A/B testing

Multi-Armed Bandit

VWJ

Bayesian Learning

- § Notation:
	- r^a : random variable for a's rewards
	- Pr(r^a ; θ): unknown distribution (parameterized by θ)
	- $R(a) = E[r^a]$: unknown average reward
- § Idea:
	- Express uncertainty about θ by a prior $Pr(\theta)$
	- Gompute posterior $Pr(\theta | r_1^a, r_2^a, ..., r_n^a)$ based on samples $r_1^a, r_2^a, ..., r_n^a$ observed for α so far.
- § Bayes theorem:

$Pr(\theta | r_1^a, r_2^a, ..., r_n^a) \propto Pr(\theta) Pr(r_1^a, r_2^a, ..., r_n^a | \theta)$

Distributional Information

- Posterior over θ allows us to estimate
	- Distribution over next reward r^a

 $Pr(r^a | r_1^a, r_2^a, ..., r_n^a) = \int_{\theta} Pr(r^a; \theta) Pr(\theta | r_1^a, r_2^a, ..., r_n^a) d\theta$

• Distribution over $R(a)$ when θ includes the mean

 $Pr(R(a) | r_1^a, r_2^a, ..., r_n^a) = Pr(\theta | r_1^a, r_2^a, ..., r_n^a)$ if $\theta = R(a)$

- § To guide exploration:
	- UCB: $Pr(R(a) \leq bound(r_1^a, r_2^a, ..., r_n^a)) \geq 1 \delta$
	- Bayesian techniques: $Pr(R(a)|r_1^a, r_2^a, ..., r_n^a)$

Coin Example

• Consider two biased coins C_1 and C_2 $R(C_1) = Pr(C_1 = head)$ $R(C_2) = Pr(C_2 = head)$

- § Problem:
	- Maximize # of heads in k flips
	- Which coin should we choose for each flip?

Bernoulli Variables

• r^{C_1} , r^{C_2} are Bernoulli variables with domain {0,1}

■ Bernoulli distributions are parameterized by their mean

$$
\blacksquare
$$
 i.e., $Pr(r^{C_1}; \theta_1) = \theta_1 = R(C_1)$

 $Pr(r^{C_2}; \theta_2) = \theta_2 = R(C_2)$

Beta Distribution

• Let the prior $Pr(\theta)$ be a Beta distribution

 $Beta(\theta; \alpha, \beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

- $\alpha 1$: # of heads
- θ 1: # of tails

$$
\bullet \, E[\theta] = \alpha/(\alpha + \beta)
$$

Belief Update

- Prior: $Pr(\theta) = Beta(\theta; \alpha, \beta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$
- Posterior after coin flip:

 $Pr(\theta | head) \propto Pr(\theta)$ $Pr(head|\theta)$ $\alpha \theta^{\alpha-1}(1-\theta)^{\beta-1}$ θ $= \theta^{(\alpha+1)-1} (1-\theta)^{\beta-1} \propto Beta(\theta; \alpha + 1, \beta)$ $Pr(\theta | tail) \propto Pr(\theta)$ $Pr(tail | \theta)$ $\propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$ (1 – θ) $= \theta^{\alpha-1}(1-\theta)^{(\beta+1)-1} \propto Beta(\theta; \alpha, \beta+1)$

Thompson Sampling

- § Idea:
	- Sample several potential average rewards: $\widehat{R}(a)$ ~ Pr $(R(a)|r_1^a, ..., r_n^a)$ for each a
	- Execute $argmax_a \hat{R}(a)$
- § Coin example
	- Pr $(R(a) | r_1^a, ..., r_n^a)$ = Beta $(\theta_a; \alpha_a, \beta_a)$ where $\alpha_a - 1 = \text{theads}$ and $\beta_a - 1 = \text{#tails}$

Thompson Sampling (Bernoulli rewards)

 $ThompsonSampling(h)$ Initialize $\alpha_a \leftarrow 1$, $\beta_a \leftarrow 1 \ \forall a$ Repeat *h* times Sample $\hat{R}(a) \sim Beta(R(a)|\alpha_a, \beta_a)$ $\forall a$ $a^* \leftarrow \argmax_a \hat{R}(a)$ Execute a^* and receive r if $r = 1$ then $\alpha_{q^*} \leftarrow \alpha_{q^*} + 1$ else $\beta_{\alpha^*} \leftarrow \beta_{\alpha^*} + 1$

Analysis

- Thompson sampling converges to best arm
- § Theory:
	- Expected cumulative regret: $O(\log n)$
	- On par with UCB and ϵ -greedy
- § Practice:
	- Thompson Sampling often outperforms UCB and ϵ -greedy

