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§ Exploration/exploitation tradeoff

§ Regret

§ Multi-armed bandits
§ !-greedy strategies

§ Upper confidence bounds

§ Thompson sampling
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Exploration/Exploitation Tradeoff

§ Fundamental problem of RL due to the active nature of the learning process

§ Consider one-state RL problems known as bandits
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Stochastic Bandits

§ Formal definition:
§ Single state: "	 = 	 {&}
§ (: set of actions (also known as arms)

§ Space of rewards  (often re-scaled to be [0,1])

§ No transition function to be learned since there is a single state

§ We simply need to learn the stochastic reward function
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§ “bandit” comes from gambling 
where slot machines can be 
thought as one-armed bandits.

Applications
§Marketing (ad placement, recommender systems)
§ Loyalty programs (personalized offers)
§ Pricing (airline seat pricing, cargo shipment pricing, food pricing)
§ Optimal design (web design, interface personalization)
§ Networks (routing)

Origin and Applications
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Online Ad Placement
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Online Ad Optimization

§ Problem: which ad should be presented?

§ Answer: present ad with highest payoff

!"#$%% = '()'*+ℎ-$./ℎ0"12	×	!"#5261

§ Click through rate: probability that user clicks on ad
§ Payment:  $$ paid by advertiser

§ Amount determined by an auction
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§ Assume payment is 1 unit for all ads

§ Need to estimate click through rate

§ Formulate as a bandit problem:
§ Arms: the set of possible ads

§ Rewards: 0 (no click) or 1 (click)

§ In what order should ads be presented to maximize revenue?
§ How should we balance exploitation and exploration?

Simplified Problem
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Uncertainty Quantification
Distribution of rewards: Pr($|&)

     Expected reward: ( & = *($|&)
      Empirical average reward: )* + = !

"∑#
" -#

Credit: https://www.baeldung.com/cs/k-armed-bandit-problem
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§ Greedy strategy: select the arm with the highest average so far
§ May get stuck due to lack of exploration

§ !-greedy: select an arm at random with probability ! and 
otherwise do a greedy selection
§ Convergence rate depends on choice of +

Simple Heuristics
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§ Let !(#) be the unknown average reward of #
§ Let %∗ = max" 	!(#) and #∗ = #%+,#-"	!(#)

§ Denote by ./00(#) the expected regret of #
($77 " = -∗ − 0(")

§ Denote by 1/00# the expected cumulative regret for 2 time steps 
;$77" =<

#$%

"
($77("#)

Regret
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§ When ! is constant, then
§ For large enough ,: Pr &! ≠ &∗ ≈ +
§ Expected cumulative regret: /011# ≈ ∑!$%# + = 3(4) 

§ Linear regret

§ When !. ∝ 1/%
§ For large enough ,: Pr &! ≠ &∗ ≈ +! = 3 %

!
§ Expected cumulative regret: /011# ≈ ∑!$%# %

! = 3(log 	4)
§ Logarithmic regret

Theoretical Guarantees
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§ Problem: how far is the empirical mean &'()) from the true mean '())?

§ If we knew that ' ) − &' ) ≤ -./01
§ Then we would know that * + < )* + + 12345

§ And we could select the arm with best )* + + 12345

§ Overtime, additional data will allow us to refine 9((&) and compute a 
tighter -./01.

Empirical Mean
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§ Suppose that we have an oracle that returns an upper bound 34#(#) 
on !(#) for each arm based on 2 trials of arm #.

§ Suppose the upper bound returned by this oracle converges to !(#) 
in the limit:
§ i.e., lim"→'@A" " = 0(")

§ Optimistic algorithm
§ At each step, select "-/5"B(	 @A"(")

Positivism in the Face of Uncertainty
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§ Theorem: An optimistic strategy that always selects argmax6787()) 
will converge to )∗

§ Proof by contradiction: 
§ Suppose that we converge to suboptimal arm & after infinitely many trials.  

§ Then ( & = :;& & ≥ :;& &' = ((&')	∀&′ 
§ But ( & ≥ ( &' 	∀&′	 contradicts our assumption that & is suboptimal.

Convergence
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§ Problem: We can’t compute an upper bound with certainty 
since we are sampling

§ However, we can obtain measures 9 that are upper bounds 
most of the time
§ i.e., Pr ( & ≤ @ & ≥ 1 − C

§ Example: Hoeffding’s inequality	 Pr ( & ≤ 9( & + ()* !
"

+##
≥ 1 − C 

                                                                        where 4$ is the number of trials for arm +

Probabilistic Upper Bound
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§ Set :7 = 1/09 
in Hoeffding’s bound

§ Choose ) with 
highest Hoeffding bound

UCB(ℎ)
    F ← 0,  4 ← 0,  4, ← 0	 ∀&
    Repeat until 4 = ℎ
        Execute argmax-	 9( & + + ()* 	#

##
	

        Receive $
        F ← F + $
        9( & ← ## /0 , 12

##1%
        4 ← 4 + 1,   4, ← 4, + 1
Return F
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update
0

empiricalaverage

counts



§ Theorem: Although Hoeffding’s bound is probabilistic, 
UCB converges.

§ Idea: As 0 increases, the term + ()* 	#
##

 increases, 
ensuring that all arms are tried infinitely often

§ Expected cumulative regret: <.==7 = >(log 	0)
§ Logarithmic regret

UCB Convergence

CS486/686 Spring 2024 - Lecture 13 - Pascal Poupart PAGE  18



§ A/B Testing: randomized 
experiment with 2 variants
§ Select best variant after 

completion of experiment

§ Multi-armed bandits: 
form of continual A/B testing

Extension of A/B Testing

Example: email marketing
• "Offer ends this Saturday! Use 

code A” (response rate: 5%)
• "Offer ends soon! Use code B" 

(response rate: 3%)
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Multi-Armed Bandit

Components Formal Def Marketing

Actions (arms) 3 ∈ 5 {A, B, C}

Rewards 6 ∈ ℝ {0, 1}

Reward model Pr 6 3 unknown

Horizon ℎ ∈ ℕ or ∞ ℎ = ∞

Credit: Shubhankar Gupta (vwo.com)
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§ Notation:
§ -(: random variable for "’s rewards
§ Pr -(; F : unknown distribution (parameterized by F)
§ 0 " = G[-(]: unknown average reward 

§ Idea:
§ Express uncertainty about F by a prior Pr(F)
§ Compute posterior Pr(F|-%(, -)(, … , -"() based on samples -%(, -)(, … , -"( 

observed for " so far.

§ Bayes theorem:
Pr M $%,, $+,, … , $#, ∝ Pr M Pr($%,, $+,, … , $#,|M)

Bayesian Learning
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§ Posterior over B allows us to estimate
§ Distribution over next reward $,
              Pr $,|$%,, $+,, … , $#, = ∫> Pr $

, ; M Pr M $%,, $+,, … , $#, RM
§ Distribution over ((&) when M includes the mean
              Pr ((&) $%,, $+,, … , $#, = Pr M $%,, $+,, … , $#,  if M = ((&)

§ To guide exploration:
§ UCB: Pr ( & ≤ S0T4R(-!$, -%$, … , -"$) ≥ 1 − C
§ Bayesian techniques: Pr ( & |-!$, -%$, … , -"$

Distributional Information
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§ Consider two biased coins C= and C>
( U% = Pr U% = ℎV&R
( U+ = Pr U+ = ℎV&R

§ Problem: 
§ Maximize # of heads in W flips

§ Which coin should we choose for each flip?

Coin Example
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§ D?!, D?" are Bernoulli variables with domain {0,1}

§ Bernoulli distributions are parameterized by their mean
§ i.e., Pr $?! ; M% = M% = ( U%
           Pr $?$ ; M+ = M+ = ((U+)

Bernoulli Variables
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§ Let the prior Pr(B) be a Beta distribution
8J%) B; L, M ∝ B@A= 1 − B BA=

§ L − 1: # of heads

§ M − 1: # of tails

§ O B = L/(L + M)

@AB3 C; 1, 1
 @AB3 C; 2, 8
 @AB3(C; 20, 80)

C

Pr(C)

Beta Distribution
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§ Prior: Pr B = 8J%) B; L, M ∝ B@A= 1 − B BA=

§ Posterior after coin flip:
       Pr M ℎV&R ∝ 	 Pr M 	 Pr ℎV&R M
                              ∝ MLM% 1 − M NM%         M
                          = M L1% M% 1 − M NM% ∝ ;V,&(M; X + 1, Y)
          Pr M ,&Z[ ∝ 	 Pr M 	 Pr ,&Z[ M
                             ∝ MLM% 1 − M NM%   (1 − M)
                         = MLM% 1 − M (N1%)M% ∝ ;V,&(M; X, Y + 1)

Belief Update
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§ Idea:
§ Sample several potential average rewards:
              \( & ~	Pr(((&)|$%,, … , $#,) for each &
§ Execute &$^_&`,	 \( &

§ Coin example
§ Pr ((&) $%,, … , $#, = Beta M,; X,, Y,

where X, − 1 = #ℎV&R1 and Y, − 1 = #,&Z[1

Thompson Sampling
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Thompson Sampling (Bernoulli rewards)

ThompsonSampling(ℎ)
    Initialize "C ← 1, %C ← 1	 ∀(
    Repeat ℎ times
        Sample )* ( 	~	,-.((* ( |"C, %C)	 ∀(
        (∗ ← argmax6	 )* (
        Execute (∗ and receive 8
        if 8 = 1 then "C∗ ← "C∗ + 1 
                    else %C∗ ← %C∗ + 1
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§ Thompson sampling converges to best arm

§ Theory:
§ Expected cumulative regret: 3(log 	4)
§ On par with UCB and +-greedy

§ Practice:
§ Thompson Sampling often outperforms UCB and +-greedy

Analysis
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