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Outline

= Exploration/exploitation tradeoff
= Regret
= Multi-armed bandits

= e-greedy strategies
= Upper confidence bounds

= Thompson sampling
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Exploration/Exploitation Tradeoff

= Fundamental problem of RL due to the active nature of the learning process

= Consider one-state RL problems known as bandits
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Stochastic Bandits

= Formal definition:
= Single state: S = {s}
= A: set of actions (also known as arms)

= Space of rewards (often re-scaled to be [0,1])

= No transition function to be learned since there is a single state

= We simply need to learn the stochastic reward function
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S
Origin and Applications

= “bandit” comes from gambling
where slot machines can be
thought as one-armed bandits.

Applications
® Marketing (ad placement, recommender systems)

® Loyalty programs (personalized offers)

® Pricing (airline seat pricing, cargo shipment pricing, food pricing)

® Optimal design (web design, interface personalization)

® Networks (routing)
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Online Ad Placement
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Online Ad Optimization

= Problem: which ad should be presented?

= Answer: present ad with highest payoft

payoff = clickThroughRate X payment

= Click through rate: probability that user clicks on ad
= Payment: $$ paid by advertiser

= Amount determined by an auction
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Simplified Problem

Assume payment is 1 unit for all ads

Need to estimate click through rate

Formulate as a bandit problem:
= Arms: the set of possible ads

= Rewards: 0 (no click) or 1 (click)

In what order should ads be presented to maximize revenue?

= How should we balance exploitation and exploration?
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Uncertainty Quantification

Distribution of rewards: Pr(r|a)
® Expected reward: R(a) = E(r|a)
e Empirical average reward: R(a) = ~Y7r,
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Actions Credit: https://www.baeldung.com/cs/k-armed-bandit-problem
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Simple Heuristics

= Greedy strategy: select the arm with the highest average so far

= May get stuck due to lack of exploration

= c-greedy: select an arm at random with probability € and
otherwise do a greedy selection

= Convergence rate depends on choice of €
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Regret

Let R(a) be the unknown average reward of a

Let r* = max R(a) and a* = argmax, R(a)
a

Denote by loss(a) the expected regret of a
loss(a) =r* — R(a)

Denote by Loss, the expected cumulative regret for n time steps

Loss,, = z loss(a;)
t=1
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Theoretical Guarantees

= When € is constant, then
= For large enough t: Pr(a; # a*) = €
= Expected cumulative regret: Loss,, = Y.}, € = 0(n)
= Linear regret

= When e, < 1/t
1

= For large enough t: Pr(a; +# a*) =~ €, = 0 (?)

= Expected cumulative regret: Loss,, = 2?21% = O(log n)

= Logarithmic regret
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Empirical Mean

» Problem: how far is the empirical mean R(a) from the true mean R(a)?

= If we knew that |R(a) — ﬁ(a)| < bound
» Then we would know that r(a) < R(a) + bound

= And we could select the arm with best R(a) + bound

= Overtime, additional data will allow us to refine R(a) and compute a
tighter bound.
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Positivism in the Face of Uncertainty

= Suppose that we have an oracle that returns an upper bound UB,,(a)
on R(a) for each arm based on n trials of arm a.

= Suppose the upper bound returned by this oracle converges to R(a)
in the limit:

= i.e., lim UB,(a) = R(a)
n—>0o

= Optimistic algorithm

= At each step, select argmax, UB, (a)
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Convergence

= Theorem: An optimistic strategy that always selects argmax,UB,, (a)
will converge to a*

= Proof by contradiction:
= Suppose that we converge to suboptimal arm a after infinitely many trials.
= Then R(a) = UB,(a) = UB,(a’) = R(a") Va'

= But R(a) = R(a') Va' contradicts our assumption that a is suboptimal.
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e
Probabilistic Upper Bound

= Problem: We can’t compute an upper bound with certainty
since we are sampling

= However, we can obtain measures f that are upper bounds
most of the time

= ie.,Pr(R(a) < f(a))=1-6

_ log(=
= Example: Hoeffding’s inequality | Pr| R(a) < R(a) + %@ >1—-6

a

where n, is the number of trials for arm a
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Upper Confidence Bound (UCB)

» Set §,, = 1/n*
in Hoeffding’s bound

» Choose a with
highest Hoeffding bound
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UCB(h)
V<0, n<0 n,«< 0 Va
Repeat untiln = h

Execute argmax, R(a) + /2 lzg =

Receive r
f«\J?A A

VeV+r
R(a) naR(a)+r

Ng
Re+ 1
Q w/:t'c
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UCB Convergence

= Theorem: Although Hoeffding’s bound is probabilistic,
UCB converges.

2log n
1ncreases,

= Idea: As n increases, the term

Ng

ensuring that all arms are tried infinitely often

= Expected cumulative regret: Loss,, = O(log n)

» Logarithmic regret
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-
Extension of A/B Testing

» A/B Testing: randomized

experiment with 2 variants oo aa
= Select best variant after
completion of experiment
Welcome to our website Welcome to our website

Lorem ipsum dolor sit amet, consectetur adipiscing eit, sed

do elusmod tempor Incididunt ut labore et dolore magna
venia aliqua. Ut enim ad minim veniam, quis nostrud exercitation

uamco laboris nisi ut aliquip ex ea commodo consequat ullamco laboris nisi ut aliquip ex ea commodo consequat.

Example: email marketing

« "Offer ends this Saturday! Use
code A” (response rate: 5%) Clck rates .. o,

« "Offer ends soon! Use code B"
Example of A/B testing on a website. By randomly =

. 00
(response rate: 3%) serving visitors two versions of a website that differ only
in the design of a single button element, the relative
efficacy of the two designs can be measured.

= Multi-armed bandits:
form of continual A/B testing
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Multi-Armed Bandit

VWO Credit: Shubhankar Gupta (vwo.com)
A/B Testing Bandit Selection
Components Formal Def | Marketing :
Actions (arms) ac€A {A, B, C} = g
Rewards reR {0, 1} “g “\5
Reward model Pr(r|a) unknown
" 0 2 4 6 8 Time 0 2 4 6 8
Horizon h € N or oo h’ = «— Exploration —>§<~ Exploitation — <«——  Exploration & Exploitation ~—>
Variation A Variation (® Variation (&
High CTR Medium CTR Low CTR
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Bayesian Learning

= Notation:
= r%: random variable for a’s rewards
= Pr(r%; 8): unknown distribution (parameterized by 6)
= R(a) = E[r?%]: unknown average reward

» [dea:

= Express uncertainty about 8 by a prior Pr(6)
= Compute posterior Pr(6|r?, ry, ..., %) based on samples r{, 3, ..., e
observed for a so far.

= Bayes theorem:

Pr(6|ri, s, ..., 5d) < Pr(0) Pr(ri, ry, ..., n|60)
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Distributional Information

= Posterior over 8 allows us to estimate
= Distribution over next reward r¢
Pr(r®|ri, v, 1) = [, Pr(r®; 6) Pr(8|ri, 1, ..., 1) dB
= Distribution over R(a) when 6 includes the mean
Pr(R(a)|r{", vy, ...,¢) = Pr(0|r{, vy, ..., ) if 6 = R(a)

= To guide exploration:
= UCB: Pr(R(a) < bound(r®*,7,....,t%)) =1—-6
= Bayesian techniques: Pr(R(a)|r% %% ..., %)
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Coin Example

= Consider two biased coins C; and C,
R(C,) = Pr(C; = head)
R(C,) = Pr(C, = head)

= Problem:
= Maximize # of heads in k flips

= Which coin should we choose for each flip?
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Bernoulli Variables

« %, r¢2 are Bernoulli variables with domain {0,1}

= Bernoulli distributions are parameterized by their mean
. i.e., Pr‘(T‘Cl; 81) — 91 — R(Cl)
Pr(rz;6;) = 6, = R(C;)
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Beta Distribution

Let the prior Pr(6) be a Beta distribution
Beta(0; a,B) x 0%~ 1(1 — 9)F~1

Beta(6;1,1)
Beta(6; 2,8
= ¢ — 1: # of heads A Biizge;zo,%m
= B — 1: # of tails Pr(6)
" E[0] =a/(a+p) m
0 0.2 1

0

W UNIVERSITY OF
CS486/686 Spring 2024 - Lecture 13 - Pascal Poupart PAGE 25 @ WATE RLOO



Belief Update

« Prior: Pr(0) = Beta(6; a, ) x 0% 1(1 —6)~~1
= Posterior after coin flip:
Pr(@|head) « Pr(6) Pr(head|0)
o« % 1(1 — 9)~F1 6
= gla+)-1(1 _ 9)A~1 « Beta(6;a + 1, B)
Pr(@|tail) « Pr(6) Pr(tail|@)
x 0% 1(1-0)F1 1-06)
=0%"1(1 - 0)B+*V-1 « Beta(; a, B + 1)
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Thompson Sampling

= Idea:
= Sample several potential average rewards:
R(a)~ Pr(R(a)|rd, ..., %) for each a
« Execute argmax, R(a)

= Coin example
= Pr(R(a)|r{, ..., ) = Beta(0,; ag, Ba)
where a, — 1 = #heads and B, — 1 = #tails
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Thompson Sampling (Bernoulli rewards)

ThompsonSampling(h)
Initialize a, < 1, B, < 1 Va
Repeat h times
Sample R(a) ~ Beta(R(a)|agy, By) Va
a* « argmax, R(a)
Execute a* and receive r
ifr=1thena, « a,+1
else B+ « By + 1
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.
Analysis

= Thompson sampling converges to best arm

= Theory:
= Expected cumulative regret: O (log n)

= On par with UCB and e-greedy
= Practice:

» Thompson Sampling often outperforms UCB and e-greedy
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