Lecture 13: Multi-Armed Bandits CS486/686 Intro to Artificial Intelligence

Pascal Poupart David R. Cheriton School of Computer Science CIFAR AI Chair at Vector Institute

Outline

- Exploration/exploitation tradeoff
- Regret
- Multi-armed bandits
 - ϵ -greedy strategies
 - Upper confidence bounds
 - Thompson sampling

Exploration/Exploitation Tradeoff

• Fundamental problem of RL due to the active nature of the learning process

• Consider one-state RL problems known as **bandits**

Stochastic Bandits

- Formal definition:
 - Single state: $S = \{s\}$
 - *A*: set of actions (also known as arms)
 - Space of rewards (often re-scaled to be [0,1])
- No transition function to be learned since there is a single state
- We simply need to learn the **stochastic** reward function

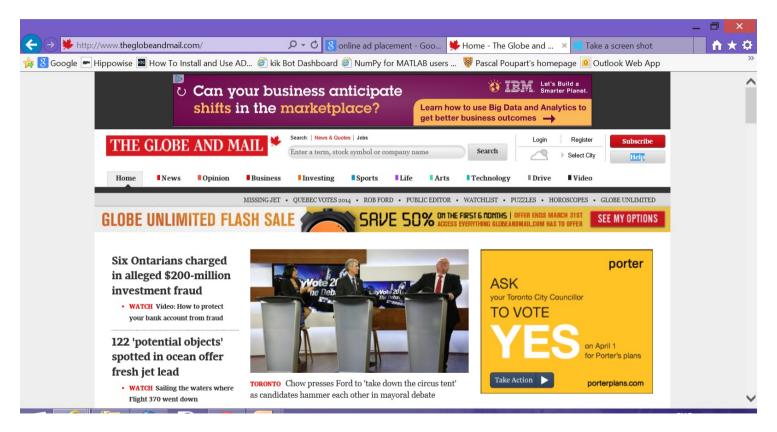
Origin and Applications

 "bandit" comes from gambling where slot machines can be thought as one-armed bandits.

Applications

- Marketing (ad placement, recommender systems)
- Loyalty programs (personalized offers)
- Pricing (airline seat pricing, cargo shipment pricing, food pricing)
- **Optimal design** (web design, interface personalization)
- Networks (routing)

Online Ad Placement



Online Ad Optimization

- Problem: which ad should be presented?
- Answer: present ad with highest payoff

 $payoff = clickThroughRate \times payment$

- Click through rate: probability that user clicks on ad
- Payment: \$\$ paid by advertiser
 - Amount determined by an auction

Simplified Problem

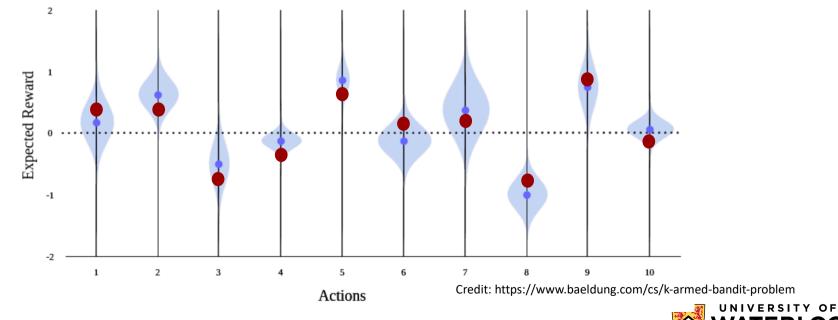
- Assume payment is 1 unit for all ads
- Need to estimate click through rate
- Formulate as a bandit problem:
 - Arms: the set of possible ads
 - Rewards: 0 (no click) or 1 (click)
- In what order should ads be presented to maximize revenue?
 - How should we balance exploitation and exploration?

Uncertainty Quantification

Distribution of rewards: Pr(r|a)

• Expected reward: R(a) = E(r|a)

• Empirical average reward: $\tilde{R}(a) = \frac{1}{n} \sum_{t=1}^{n} r_t$



Simple Heuristics

- Greedy strategy: select the arm with the highest average so far
 - May get stuck due to lack of exploration

- *ε*-greedy: select an arm at random with probability *ε* and otherwise do a greedy selection
 - Convergence rate depends on choice of ϵ

Regret

- Let *R*(*a*) be the unknown average reward of *a*
- Let $r^* = \max_a R(a)$ and $a^* = \operatorname{argmax}_a R(a)$
- Denote by *loss*(*a*) the expected regret of *a*

 $loss(a) = r^* - R(a)$

• Denote by *Loss_n* the expected cumulative regret for *n* time steps

$$Loss_n = \sum_{t=1}^{n} loss(a_t)$$

Theoretical Guarantees

- When ϵ is constant, then
 - For large enough *t*: $Pr(a_t \neq a^*) \approx \epsilon$
 - Expected cumulative regret: $Loss_n \approx \sum_{t=1}^n \epsilon = O(n)$
 - Linear regret
- When $\epsilon_t \propto 1/t$

 - For large enough t: Pr(a_t ≠ a^{*}) ≈ ε_t = 0 (¹/_t)
 Expected cumulative regret: Loss_n ≈ Σⁿ_{t=1} ¹/_t = 0(log n)
 - Logarithmic regret

Empirical Mean

- Problem: how far is the empirical mean $\tilde{R}(a)$ from the true mean R(a)?
- If we knew that $|R(a) \tilde{R}(a)| \le bound$
 - Then we would know that $R(a) < \tilde{R}(a) + bound$
 - And we could select the arm with best $\tilde{R}(a) + bound$
- Overtime, additional data will allow us to refine $\tilde{R}(a)$ and compute a tighter *bound*.

Positivism in the Face of Uncertainty

- Suppose that we have an oracle that returns an upper bound UB_n(a) on R(a) for each arm based on n trials of arm a.
- Suppose the upper bound returned by this oracle converges to *R(a)* in the limit:
 - i.e., $\lim_{n \to \infty} UB_n(a) = R(a)$
- Optimistic algorithm
 - At each step, select $argmax_a UB_n(a)$

Convergence

- Theorem: An optimistic strategy that always selects argmax_aUB_n(a) will converge to a*
- Proof by contradiction:
 - Suppose that we converge to suboptimal arm *a* after infinitely many trials.
 - Then $R(a) = UB_{\infty}(a) \ge UB_{\infty}(a') = R(a') \forall a'$
 - But $R(a) \ge R(a') \forall a'$ contradicts our assumption that *a* is suboptimal.

Probabilistic Upper Bound

- Problem: We can't compute an upper bound with certainty since we are sampling
- However, we can obtain measures *f* that are upper bounds most of the time
 - i.e., $\Pr(R(a) \le f(a)) \ge 1 \delta$
 - Example: Hoeffding's inequality

$$\Pr\left(R(a) \le \tilde{R}(a) + \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2n_a}}\right) \ge 1 - \delta$$

where n_a is the number of trials for arm a

Upper Confidence Bound (UCB)

- Set $\delta_n = 1/n^4$ in Hoeffding's bound
- Choose *a* with highest Hoeffding bound

UCB(h) $V \leftarrow 0, n \leftarrow 0, n_a \leftarrow 0 \quad \forall a$ Repeat until n = h2 log *n* Execute $\operatorname{argmax}_{a} \tilde{R}(a) + \frac{1}{2}$ Receive r $V \leftarrow V + r$ $\tilde{R}(a) \leftarrow \frac{n_a \tilde{R}(a) + r}{n_a \tilde{R}(a) + r}$ n} $n_a \leftarrow n_a$ Return

UCB Convergence

- **Theorem:** Although Hoeffding's bound is probabilistic, UCB converges.
- Idea: As *n* increases, the term $\sqrt{\frac{2 \log n}{n_a}}$ increases, ensuring that all arms are tried infinitely often
- Expected cumulative regret: $Loss_n = O(\log n)$
 - Logarithmic regret

Extension of A/B Testing

- **A/B Testing:** randomized experiment with 2 variants
 - Select best variant after completion of experiment

Example: email marketing

- "Offer ends this Saturday! Use code A" (response rate: 5%)
- "Offer ends soon! Use code B" (response rate: 3%)
- Multi-armed bandits: form of continual A/B testing



Multi-Armed Bandit

Components	Formal Def	Marketing
Actions (arms)	$a \in A$	{A, B, C}
Rewards	$r \in \mathbb{R}$	{0, 1}
Reward model	$\Pr(r a)$	unknown
Horizon	$h \in \mathbb{N}$ or ∞	$h = \infty$



Bayesian Learning

- Notation:
 - *r^a*: random variable for *a*'s rewards
 - $Pr(r^a; \theta)$: unknown distribution (parameterized by θ)
 - $R(a) = E[r^a]$: unknown average reward
- Idea:
 - Express uncertainty about θ by a prior $Pr(\theta)$
 - Compute posterior Pr(θ|r₁^a, r₂^a, ..., r_n^a) based on samples r₁^a, r₂^a, ..., r_n^a observed for *a* so far.
- Bayes theorem:

 $\Pr(\theta | r_1^a, r_2^a, \dots, r_n^a) \propto \Pr(\theta) \Pr(r_1^a, r_2^a, \dots, r_n^a | \theta)$

Distributional Information

- Posterior over θ allows us to estimate
 - Distribution over next reward r^a

 $\Pr(r^{a}|r_{1}^{a}, r_{2}^{a}, \dots, r_{n}^{a}) = \int_{\theta} \Pr(r^{a}; \theta) \Pr(\theta|r_{1}^{a}, r_{2}^{a}, \dots, r_{n}^{a}) d\theta$

• Distribution over R(a) when θ includes the mean $Pr(R(a)|x^{\theta}, x^{\theta}) = Pr(0|x^{\theta}, x^{\theta}) = r(0)$

 $\Pr(R(a)|r_1^a, r_2^a, \dots, r_n^a) = \Pr(\theta|r_1^a, r_2^a, \dots, r_n^a) \text{ if } \theta = R(a)$

- To guide exploration:
 - UCB: $\Pr(R(a) \leq bound(r_1^a, r_2^a, \dots, r_n^a)) \geq 1 \delta$
 - Bayesian techniques: $Pr(R(a)|r_1^a, r_2^a, ..., r_n^a)$

Coin Example

• Consider two biased coins C_1 and C_2 $R(C_1) = \Pr(C_1 = head)$ $R(C_2) = \Pr(C_2 = head)$

- Problem:
 - Maximize # of heads in *k* flips
 - Which coin should we choose for each flip?

Bernoulli Variables

• r^{C_1} , r^{C_2} are Bernoulli variables with domain {0,1}

Bernoulli distributions are parameterized by their mean

• i.e.,
$$Pr(r^{C_1}; \theta_1) = \theta_1 = R(C_1)$$

 $\Pr(r^{C_2};\theta_2) = \theta_2 = R(C_2)$

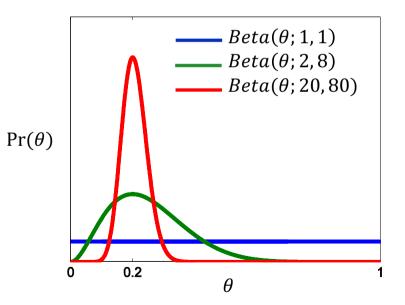
Beta Distribution

• Let the prior $Pr(\theta)$ be a Beta distribution

 $Beta(\theta; \alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$

- $\alpha 1$: # of heads
- β − 1: # of tails

•
$$E[\theta] = \alpha/(\alpha + \beta)$$



Belief Update

- Prior: $Pr(\theta) = Beta(\theta; \alpha, \beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$
- Posterior after coin flip:

 $\begin{aligned} \Pr(\theta | head) &\propto & \Pr(\theta) & \Pr(head | \theta) \\ &\propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} & \theta \\ &= \theta^{(\alpha + 1) - 1} (1 - \theta)^{\beta - 1} \propto Beta(\theta; \alpha + 1, \beta) \\ \Pr(\theta | tail) &\propto & \Pr(\theta) & \Pr(tail | \theta) \\ &\propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} & (1 - \theta) \\ &= \theta^{\alpha - 1} (1 - \theta)^{(\beta + 1) - 1} &\propto Beta(\theta; \alpha, \beta + 1) \end{aligned}$

Thompson Sampling

- Idea:
 - Sample several potential average rewards:
 - $\widehat{R}(a) \sim \Pr(R(a)|r_1^a, \dots, r_n^a)$ for each a
 - Execute $\operatorname{argmax}_{a} \widehat{R}(a)$
- Coin example
 - $\Pr(R(a)|r_1^a, ..., r_n^a) = \text{Beta}(\theta_a; \alpha_a, \beta_a)$ where $\alpha_a - 1 = \#heads$ and $\beta_a - 1 = \#tails$

Thompson Sampling (Bernoulli rewards)

ThompsonSampling(*h***)** Initialize $\alpha_a \leftarrow 1$, $\beta_a \leftarrow 1 \forall a$ Repeat *h* times Sample $\hat{R}(a) \sim Beta(R(a)|\alpha_a, \beta_a) \forall a$ $a^* \leftarrow \operatorname{argmax}_a \hat{R}(a)$ Execute a^* and receive *r* if r = 1 then $\alpha_{a^*} \leftarrow \alpha_{a^*} + 1$ else $\beta_{a^*} \leftarrow \beta_{a^*} + 1$

Analysis

- Thompson sampling converges to best arm
- Theory:
 - Expected cumulative regret: O(log n)
 - On par with UCB and $\epsilon\text{-greedy}$
- Practice:
 - Thompson Sampling often outperforms UCB and $\epsilon\text{-}\mathrm{greedy}$

