Lecture 12: Policy Gradient CS486/686 Intro to Artificial Intelligence

Pascal Poupart David R. Cheriton School of Computer Science CIFAR AI Chair at Vector Institute

Outline

- Stochastic policy gradient
 - REINFORCE algorithm
- AlphaGo
- Large Language Models
 - Reinforcement Learning from Human Feedback

Model-free Policy-based Methods

- Q-learning
 - Model-free value-based method
 - No explicit policy representation

- Policy gradient
 - Model-free policy-based method
 - No explicit value function representation

Stochastic Policy

- Consider stochastic policy $\pi_{\theta}(a|s) = \Pr(a|s;\theta)$ parametrized by θ .
- Finitely many discrete actions

Softmax: $\pi_{\theta}(a|s) = \frac{\exp(h(s,a;\theta))}{\sum_{a'} \exp(h(s,a';\theta))}$

where $h(s, a; \theta)$ might be **linear** in θ : $h(s, a; \theta) = \sum_i \theta_i f_i(s, a)$ or **non-linear** in θ : $h(s, a; \theta) = neuralNet(s, a; \theta)$

Continuous actions:

Gaussian: $\pi_{\theta}(a|s) = N(a|\mu(s;\theta), \Sigma(s;\theta))$

Supervised Learning

- Consider a stochastic policy $\pi_{\theta}(a|s)$
- Data: state-action pairs $\{(s_1, a_1^*), (s_2, a_2^*), ...\}$
- Maximize log likelihood of the data

$$\theta^* = argmax_{\theta} \sum_n \log \pi_{\theta}(a_n^*|s_n)$$

Gradient update

 $\theta_{n+1} \leftarrow \theta_n + \alpha_n \, \nabla_\theta \log \pi_\theta(a_n^* | s_n)$

Reinforcement Learning

- Consider a stochastic policy $\pi_{\theta}(a|s)$
- Data: state-action-reward triples { $(s_1, a_1, r_1), (s_2, a_2, r_2), \dots$ }
- Maximize discounted sum of rewards $\theta^* = \arg \max_{\theta} \left[\sum_n \gamma^n E_{\theta}[r_n | s_n, a_n] \right] = \sqrt{s} \left(\sum_{n \in I} \gamma^n E_{\theta}[r_n | s_n, a_n] \right)$
- Gradient update

$$\begin{array}{l} \theta_{n+1} \leftarrow \theta_n + \alpha_n \sqrt{n} G_n \nabla_{\theta} \log \pi_{\theta}(a_n | s_n) \\ \text{where } G_n = \sum_{t=0}^{\infty} \gamma^t r_{n+t} \end{array}$$

Stochastic Gradient Policy Theorem

Stochastic Gradient Policy Theorem

$$\nabla_{\theta} V_{\theta}(s_0) \propto \sum_{s} \mu_{\theta}(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(a|s) Q_{\theta}(s,a)$$

 $\mu_{\theta}(s)$: stationary state distribution when executing policy parametrized by θ

 $Q_{\theta}(s, a)$: discounted sum of rewards when starting in *s*, executing *a* and following the policy parametrized by θ thereafter.

Derivation

$$\begin{split} & \nabla_{\theta} V_{\theta}(s_{0}) = \nabla_{\theta} \Big[\sum_{a_{0}} \pi_{\theta}(a_{0}|s_{0}) Q_{\theta}(s_{0}, a_{0}) \Big] & \forall s_{0} \in S \\ &= \sum_{a_{0}} [\nabla \pi_{\theta}(a_{0}|s_{0}) Q_{\theta}(s_{0}, a_{0}) + \pi_{\theta}(a_{0}|s_{0}) \nabla Q_{\theta}(s_{0}, a_{0})] \\ &= \sum_{a_{0}} \Big[\nabla \pi_{\theta}(a_{0}|s_{0}) Q_{\theta}(s_{0}, a_{0}) + \pi_{\theta}(a_{0}|s_{0}) \nabla \sum_{s_{1},r_{0}} \Pr(s_{1}, r_{0}|s_{0}, a_{0}) \left(r_{0} + \gamma V_{\theta}(s_{1}) \right) \Big] \\ &= \sum_{a_{0}} \Big[\nabla \pi_{\theta}(a_{0}|s_{0}) Q_{\theta}(s_{0}, a_{0}) + \pi_{\theta}(a_{0}|s_{0}) \sum_{s_{1}} \gamma \Pr(s_{1}|s_{0}, a_{0}) \nabla V_{\theta}(s_{1}) \Big] \\ &= \sum_{a_{0}} \Big[\nabla \pi_{\theta}(a_{0}|s_{0}) Q_{\theta}(s_{0}, a_{0}) + \pi_{\theta}(a_{0}|s_{0}) \sum_{s_{1}} \gamma \Pr(s_{1}|s_{0}, a_{0}) \\ & \sum_{a_{1}} [\nabla \pi_{\theta}(a_{1}|s_{1}) Q_{w}(s_{1}, a_{1}) + \pi_{\theta}(a_{1}|s_{1}) \sum_{s_{2}} \gamma \Pr(s_{2}|s_{1}, a_{1}) \nabla V_{\theta}(s_{2})] \\ &= \sum_{s \in S} \sum_{n=0}^{\infty} \gamma^{n} \Pr(s_{0} \to s; n, \theta) \sum_{a} \nabla \pi_{\theta}(a|s) Q_{\theta}(s, a) \end{split}$$

Probability of reaching *s* from s_0 at time step *n* Since $\mu_{\theta}(s) \propto \sum_{n=0}^{\infty} \gamma^n \Pr(s_0 \to s; n, \theta)$ then

 $\propto \sum_{s} \mu_{\theta}(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(a|s) Q_{\theta}(s,a)$

REINFORCE: Monte Carlo Policy Gradient
•
$$\nabla_{\theta}V_{\theta}(s_0) = \sum_{s \in S} \sum_{n=0}^{\infty} \gamma^n \Pr(s_0 \rightarrow s; n, \theta) \sum_a \nabla_{\theta} \pi_{\theta}(a|s) Q_{\theta}(s, a)$$

 $= E_{\theta}[\sum_{n=0}^{\infty} \gamma^n \sum_a Q_{\theta}(S_n) a) \nabla_{\theta} \pi_{\theta}(a|S_n)]$
 $= E_{\theta} \left[\sum_{n=0}^{\infty} \gamma^n \sum_a \pi_{\theta}(a|S_n) Q_{\theta}(S_n, a) \frac{\nabla_{\theta} \pi_{\theta}(a|S_n)}{\pi_{\theta}(a|S_n)} \right]$
 $= E_{\theta} \left[\sum_{n=0}^{\infty} \gamma^n Q_{\theta}(S_n, A_n) \frac{\nabla_{\theta} \pi_{\theta}(A_n|S_n)}{\pi_{\theta}(A_n|S_n)} \right]$
 $= E_{\theta} \left[\sum_{n=0}^{\infty} \gamma^n G_n \frac{\nabla_{\theta} \pi_{\theta}(A_n|S_n)}{\pi_{\theta}(A_n|S_n)} \right]$
 $= E_{\theta} \left[\sum_{n=0}^{\infty} \gamma^n G_n \frac{\nabla_{\theta} \pi_{\theta}(A_n|S_n)}{\pi_{\theta}(A_n|S_n)} \right]$

• Stochastic gradient at time step n $\nabla V_{\theta} \approx \gamma^{n} G_{n} \nabla_{\theta} \log \pi_{\theta}(a_{n}|s_{n})$

REINFORCE Algorithm (stochastic policy)

REINFORCE(s_0) Initialize π_{θ} to anything Loop forever (for each episode) Generate episode $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_T, a_T, r_T$ with π_{θ} Loop for each step of the episode $n = 0, 1, \dots, T$ $G_n \leftarrow \sum_{t=0}^{T-n} \gamma^t r_{n+t}$ Update policy: $\theta \leftarrow \theta + \alpha \gamma^n G_n \nabla_{\theta} \log \pi_{\theta}(a_n | s_n)$ Return π_{θ}

Example: Game of Go

- (simplified) rules:
 - Two players (black and white)
 - Players alternate to place a stone of their color on a vacant intersection.
 - Connected stones without any liberty (i.e., no adjacent vacant intersection) are captured and removed from the board
 - Winner: player that controls the largest number of intersections at the end of the game

Computer Go

Computer Go

March 2016: AlphaGo defeats Lee Sedol (9-dan)

"[AlphaGo] can't beat me" Ke Jie (world champion)

May 2017: AlphaGo defeats Ke Jie (world champion)

"Last year, [AlphaGo] was still quite humanlike when it played. But this year, it became like a god of Go" Ke Jie (world champion)

Winning Strategy

Four steps:

- 1. Supervised Learning of Policy Networks
- 2. Policy gradient with Policy Networks
- 3. Value gradient with Value Networks
- 4. Searching with Policy and Value Networks

Policy Network

- Train policy network to imitate Go experts based on a database of 30 million board configurations from the KGS Go Server.
- Policy network: $\pi(a|s)$
 - Input: state *s* (board configuration)
 - Output: distribution over actions *a* (intersection on which the next stone will be placed)

Supervised Learning of the Policy Network

- Let θ be the weights of the policy network
- Training:
 - Data: suppose *a* is optimal in *s*
 - Objective: maximize $\log \pi_{\theta}(a|s)$
 - Gradient: $\nabla_{\theta} = \frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta}$
 - Weight update: $\theta \leftarrow \theta + \alpha \nabla_{\theta}$

Policy Gradient for the Policy Network

- How can we update a policy network based on reinforcements instead of the optimal action?
- Let $G_n = \sum_t \gamma^t r_{n+t}$ be the discounted sum of rewards in a trajectory that starts in *s* at time *n* by executing *a*.

• Gradient:
$$\nabla_{\theta} = \frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} \gamma^{n} G_{n}$$

- Intuition: rescale supervised learning gradient by G_n
- Policy update: $\theta \leftarrow \theta + \alpha \nabla_{\theta}$

Policy Gradient for the Policy Network

• In computer Go, program repeatedly plays against its former self.

• For each game
$$G_n = \begin{cases} 1 & win \\ -1 & lose \end{cases}$$

- For each (s_n, a_n) at turn *n* of the game, assume $\gamma = 1$ and compute
 - Gradient: $\nabla_{\theta} = \frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} \gamma^{n} G_{n}$
 - Policy update: $\theta \leftarrow \theta + \alpha \nabla_{\theta}$

Value Network

- Predict V(s') (i.e., who will win game) in each state s' with a value network
 - Input: state *s* (board configuration)
 - Output: expected discounted sum of rewards V(s')

Gradient Value Learning with Value Networks

- Let *w* be the weights of the value network
- Training:

• Data:
$$(s, G)$$
 where $G = \begin{cases} 1 & win \\ -1 & lose \end{cases}$

• Objective: minimize
$$\frac{1}{2}(V_w(s) - G)^2$$

• Gradient:
$$\nabla_{w} = \frac{\partial V_{w}(s)}{\partial w} (V_{w}(s) - G)$$

• Weight update: $w \leftarrow w - \alpha \nabla_w$

Searching with Policy and Value Networks

- AlphaGo combines policy and value networks into a Monte Carlo Tree Search (MCTS) algorithm
- Idea: construct a search tree
 - Node: *s*
 - Edge: *a*
- We will discuss MCTS next lecture

Competition

Date	Black	White	Category	Result
5/10/15	Fan Hui	AlphaGo	Formal	AlphaGo wins by 2.5 points
5/10/15	Fan Hui	AlphaGo	Informal	Fan Hui wins by resignation
6/10/15	AlphaGo	Fan Hui	Formal	AlphaGo wins by resignation
6/10/15	AlphaGo	Fan Hui	Informal	AlphaGo wins by resignation
7/10/15	Fan Hui	AlphaGo	Formal	AlphaGo wins by resignation
7/10/15	Fan Hui	AlphaGo	Informal	AlphaGo wins by resignation
8/10/15	AlphaGo	Fan Hui	Formal	AlphaGo wins by resignation
8/10/15	AlphaGo	Fan Hui	Informal	AlphaGo wins by resignation
9/10/15	Fan Hui	AlphaGo	Formal	AlphaGo wins by resignation
9/10/15	AlphaGo	Fan Hui	Informal	Fan Hui wins by resignation

Extended Data Table 1 | Details of match between AlphaGo and Fan Hui

The match consisted of five formal games with longer time controls, and five informal games with shorter time controls. Time controls and playing conditions were chosen by Fan Hui in advance of the match.

Large Language Models (up to Sept 2023)

Credit: https://synthedia.substack.com/p/a-timeline-of-large-language-model

CS486/686 Spring 2024 - Lecture 12 - Pascal Poupart

PAGE 23

Self-Supervised Learning in LLMs

Encoder and Decoder

Credit: Zhang et al., 2020

Credit: Vaswani et al., 2017

GPT Models

InstructGPT (GPT-3) January 27, 2022

Reinforcement Learning from human feedback

Ouyang et al. (2022) Training language models to follow instructions with human feedback **ChatGPT** (GPT-3.5) November 30, 2022

Multi-turn conversations

No techreport

GPT-4 March 14, 2023

Multi-modal (text and images)

GPT-4 Technical Report (2023) **GPT Omni GPT-40** May 13, 2024

End-to-end Multi-modal (text, audio and images)

https://openai.com/i ndex/hello-gpt-40/

Learning from Human Feedback

9

Explain the moon

landing to a 6 year old

Some people went to the moon...

SET

0

Step 1

Collect demonstration data. and train a supervised policy.

- A prompt is sampled from our prompt dataset.
- A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

the outputs from best to worst.

to train our

Moon is natural satellite of. A labeler ranks

D > C > A = B

 \bigcirc

B

Explain war...

D

People went to

the moon.

Step 3

Optimize a policy against the reward model using reinforcement learning.

The reward model calculates a reward for

the output. The reward is used to update

the policy using PPO.

 r_k

-

Write a story

about frogs

Once upon a time..

Response Ranking

- Explain reinforcement learning in three sentences.
- < 1 / 2 > 🏼 🖏

Reinforcement learning is a type of machine learning where an agent learns to make decisions by receiving feedback in the form of rewards or punishments. The agent's goal is to maximize its cumulative reward over time by exploring different actions and learning which actions lead to the highest rewards. Reinforcement learning has been successfully applied to a variety of tasks, including game playing, robotics, and recommendation systems.

Reinforcement learning is a type of machine learning that focuses on training an agent to make decisions based on trial and error. The agent receives feedback in the form of rewards or penalties for each decision it makes. By learning from this feedback, the agent can improve its decision-making abilities over time.

Was this response better or worse? \bigcirc Better $egin{array}{ccc}$ Worse $egin{array}{ccc}$ Same $ext{X}$

CS486/686 Spring 2024 - Lecture 12 - Pascal Poupart

Reward Model

Stiennon, Ouyang, Wu, Ziegler, Lowe Voss, Radford, Amodei, Christiano (2020) Learning to summarize from human feedback, *NeurIPS*.

- *s*: user prompt
- *a*: system response
- Reward function: $r_{\theta}(s, a) = real number$
- Consider several possible responses $a_1 \ge a_2 \ge \cdots \ge a_k$ ranked by annotator
- Training reward function to be consistent with the ranking:

$$Loss(\theta) = -\frac{1}{\binom{k}{2}} E_{(s,a_i,a_j) \in Dataset} \log \sigma \left(r_{\theta}(s,a_i) - r_{\theta}(s,a_j) \right)$$

Reinforcement Learning

Ouyang, Wu, Jiang, Wainwright, et al. (2022) **Training language models to follow instructions with human feedback**, *NeurIPS*.

- Pretrain language model (GPT-3)
- Fine-Tune GPT-3 by RL to obtain InstructGPT
 - Policy (language model): $\pi_{\phi}(s) = a$
 - Optimize $\pi_{\phi}(s)$ by policy gradient (PPO)

$$\max_{\phi} E_{s \in Dataset} \left[E_{a \sim \pi_{\phi}(a|s)} [r_{\theta}(s,a)] - \beta \ KL \left(\pi_{\phi}(\cdot|s) \middle| \pi_{ref}(\cdot|s) \right) \right]$$

InstructGPT Results

CS486/686 Spring 2024 - Lecture 12 - Pascal Poupart